
Design Smells

	“Uncle Bob” Martin, the architect of the SOLID principles, identifies several “design smells” that are symptomatic of “rotting software.”

	Outline for Week 8
I. Design smells
II.
Single Responsibility
III.
Open-Closed

IV.
Liskov Substitution
V.
Interface
Segregation
VI.
Dependency Inversion

Rigidity
The system is hard to change because every change forces changes to other parts of the system.

You start to make what seems to be a simple change, but as you get into it, you find that it impacts more code than you expected. And when you fix the code in the other places, it affects still more modules. What principle or guideline from past weeks does this violate?

Fragility
A single change tends to “break” the program in many places.

Often those places have little apparent relation to the place where the code is changed. Patching those modules may make the problem worse later on.

Immobility

Parts of the code could be useful in other systems, but it is easier to rewrite them than to extricate them and reuse them.

Viscosity

When changes need to be made, the design is hard to preserve.

It is easier to hack a change into the code than to make it in a way that follows the principles of the design. Example: Instead of subclassing a base class again, use case statements to add new functionality.

Needless complexity
The design includes elements that aren’t currently useful. Maybe the designer expects them to be useful later on …

Needless repetition
What’s another name for this problem?

Opacity
A module is difficult to understand, not written in a clear and direct manner.

Code tends to become more opaque as it ages, because no one is intimately familiar with it any longer.
SOLID Principles

The SOLID principles are an acronym for five design principles that are not patterns, but just rules to be followed when designing programs.
The Single-Responsibility Principle

[SaaS §11.3] The Single-Responsibility Principle is

A class should have only one reason to change.
We have already seen this principle. Good cohesion dictates that, “Every class should be responsible for doing one thing only and doing it well.”
But what does “doing one thing only” mean? Martin says it means that a class should have only one reason to change.

One bad example, that is common in student code, is a controller class that does calculations related to the application’s business logic.

Another of Martin’s examples is a Rectangle class that has two responsibilities: calculate area and draw itself.

Two applications use Rectangles. Only one needs to draw the rectangle.

In a static language, the GUI class would have to be included in both applications. Changes to the draw()method would force the computational-geometry application to be recompiled, even though it doesn’t use the method.

A dynamic language doesn’t have these problems, but still

Now, it is possible to go overboard with this principle. Too many classes are bad, too. The ideal number of methods for a class ≠ 1.

Martin clarifies what he means by a single reason for change: “Gather together the things that change for the same reasons. Separate those things that change for different reasons.”
Here’s an example of a CityMap class.

"Bad" Example

Main class: CityMap
In this example, the CityMap class represents a map consisting of a list of cities with various attributes. Although this represents a single logical object, the CityMap class takes on several very separate pieces of functionality which should, according to this principle, be divided into several classes. Those functionalities include managing the list of cities (add and remove), drawing the map on the screen, and calculating the total population.
"Good" Example

The good example simply splits the CityMap class into two classes, Map and CityList. CityList maintains the ArrayList of cities and also allows calculating the total population. The Map class focuses solely on drawing the map on a screen. This fixes the issues with the "bad" example, as each class now focuses solely on operations related to one set of data.
First, say which components of the “bad” example should go into each class in the “good” example.

Then, fill in the blanks in the Ruby or Java “good” example.
The Open-Closed Principle

The open-closed principle can be expressed as follows:

Software entities (classes, modules, functions, etc.) should be open for extension, but closed for modification.

Why is it harder to add new functionality to a program when an existing class needs to change? Unfortunately, this approach may require other classes that depend on the changed classes to change, which in turn may require still other changes. These changes may introduce new errors into the code. Better to minimize the amount of change to working code and instead to extend that code by adding new classes that incorporate the changes.
Keeping the data of a class private helps assure that the class is closed for modification.

Here is a bad and a good example of the Open-Closed principle.

Bad Example

Main class - ProgramRunner
In this example, ProgramRunner.java is responsible for running programs from several programming languages. Two classes (PythonProgram and RubyProgram) implement the Program interface, which has a getCode() and a getType() method.
ProgramRunner has to figure out which type of program it has been given in order to run it, and therefore has an ugly if statement followed by a separate method to run every type of program.
In production, such a system would quickly grow unwieldy, as adding any type of program requires adding to the if statement and adding new methods to the ProgramRunner, breaking the Open/Closed Principle.

Good Example

The Good example corrects the above issues by simply adding a runProgram" method to the Program interface.
This renders the entire ProgramRunner class obsolete, and allows each class to handle its own execution, rather than being tightly coupled to a ProgramRunner class.
As a result of this change, new Program types can be added without needing to also update the ProgramRunner class.
Fill in the rest of the code for the good example in Java (or in Ruby).

If classes are not to change, then you need to be careful to design them so they don’t need to. This suggests …
The Liskov Substitution Principle

[SaaS §11.5] A short statement of the Liskov Substitution Principle is,

Subtypes must be substitutable for their base types.

If they are not, you have to be careful in writing code that uses the base type. One example from StackExchange:

Suppose you have a class Task and a subclass ProjectTask. Task has a close() method that doesn’t work for ProjectTask.

Here is some code that uses close().

public void processTaskAndClose(Task taskToProcess)

{

 taskToProcess.execute();

 taskToProcess.dateProcessed = DateTime.now;

 taskToProcess.close();

}
You can’t be sure this code will work if a ProjectTask is passed to processTaskAndClose. So you need to put some kind of if statement or case statement around the call to close().

Here’s an exercise involving the LSP.
"Bad" Example
In this example, a Computer object keeps track of its amount of RAM and its OS version. It also has methods for upgrading the RAM and updating the OS. Two classes, a DesktopComputer and a Phone, extend this class and implement its methods.

A ComputerUpgrader object claims to be able to upgrade any Computer (that is, add more RAM and update the OS), but it really can't add more RAM to a phone, so it must check to make sure the Computer object it has been given isn't a Phone.

This violates the LSP, as a Phone cannot fully be substituted for a Computer.

"Good" Example

The most straightforward method of solving the above problems is to add a new interface HardwareUpgradable, which is only implemented by Computers which can have their hardware upgraded (DesktopComputer can, Phone cannot).

Next, by splitting the upgrade method in ComputerUpgrader into upgradeRAM (which accepts HardwareUpgradable) and upgradeOS (which accepts any computer), the issue can be resolved. No type-checking is necessary.

Fill in the blanks to finish this example in Java (or in Ruby).

The Interface-Segregation Principle

The Single-Responsibility Principle tells us that classes that are too big are no good. The Interface-Segregation Principle says the same thing about interfaces. It is,

Clients should not be forced to depend on methods that they do not use.
If you know Java, you are probably familiar with the MouseListener and MouseMotionListener interfaces. Both of them handle MouseEvents. Why are two listeners needed for MouseEvents, when all other kinds of events have only one listener interface?

This video describes the issue of read streams vs. read-and-write streams.

OK, you might say, this makes sense for Java, but how about Ruby? Ruby doesn’t even have interfaces!

Indeed, dynamically typed languages don’t need interfaces. Why?

The issue, then, is how to give a Ruby class access to the methods it needs from another class, rather than giving it access to all the methods, which it would get if it inherited from the class.

The forwardable mixin has a def_delegator method that allows one Ruby class to use some, but not all, of the methods of the class it delegates to. This video shows how forwardable can be used to create a Moderator class that can edit posts, but not create or delete them.

Here is an exercise involving the ISP.

"Bad" Example
In this example, a single interface, Game is created, for two classes, SingleplayerGame and MultiplayerGame.

This is on the surface a logical structure. However, in this case, the methods getServerList and pauseGame, published in the Game interface, are not used by both clients (as a MultiplayerGame cannot be paused, and a SingleplayerGame does not have servers).

Because of this mismatch, the SingleplayerGame is forced to throw an UnsupportedOperationException when getServerList is called on it, and MultiplayerGame is forced to throw an UnsupportedOperationException when pauseGame is called on it.

This demonstrates a violation of the Interface Segregation principle, as a single, logical but ill-fitting interface is used by several clients, despite clear incompatibilities.

"Good" Example

This example is derived from the “bad" example. In this case, the single interface Game was split into three interfaces with a single method each: BasicGame, OnlineGame, and PausableGame.

With this split, MultiplayerGame can implement BasicGame and OnlineGame, but it does not need to implement PausableGame (as it is not pausable), and SingleplayerGame can implement BasicGame and PausableGame (as it can be paused but is not online). This corrects the need to throw UnsupportedOperationExceptions, and follows the ISP by dividing one general purpose interface into several smaller interfaces.
Fill in the blanks in the “good” Java code (or Ruby code).

The Dependency-Inversion principle

[SaaS §11.6] We have just seen an instance where code depends on abstractions to decide what kind of object is to be created. Now here is another situation where code is clearer if it depends on abstractions.

Any object that uses another object to carry out its work is said to depend on the other object. A very common layered architecture has higher-level modules depending on lower-level modules, like this.
[image: image1.png]Policy Layer

Mechanism
Layer

Utility Layer

However, the Dependency-Inversion Principle says this is not good. It says,

· High-level modules should not depend on low-level modules. Both should depend on abstractions.

· Abstractions should not depend on details. Details should depend on abstractions.

The reason that it’s bad for high-level modules to depend on low-level modules is that a change to a low-level module can require a change to a high-level module.

This makes it hard to contain the damage when editing low-level modules.

The reason that this is called an “inversion” principle is that it goes against the advice of other software-development methodologies, such as Structured Analysis and Design.
Interposing interfaces between the various levels allows either level to change without affecting the other, assuming that the same interface is still implemented.

[image: image2.png]Policy Layer

<<interface>>
Policy Service
Interface

Mechanism
Layer

<<interface>>
Mechanism
Service
Interface

The second part of the principle says, essentially, that high-level modules should not get involved in performing low-level functions.

This video explains that

· the Coca Cola CEO should not deliver products to 7/11, and

· the Ruby ActiveRecord class should not say how an application’s users table is to be structured.

Just as with the Single-Responsibility and Interface-Segregation Principles, it is possible to go overboard with Dependency Inversion.

The system should not be filled with single-method classes and interfaces, nor should there be an interface between every two classes.

Interfaces should be reserved for the boundaries between layers, or collections of classes that are otherwise cohesive.

Here is an exercise involving the Dependency-Inversion Principle.

"Bad" Example
Main Class: Bank
In this example, a Bank class is a high-level class with complex functionality (redacted for this example). One piece of that functionality is handling transactions between various accounts (simple, low-level classes).
The Bank, however, is very tightly coupled with the CheckingAccount and SavingsAccount classes. Adding additional account types (such as a MoneyMarketAccount, InvestmentAccount, or RetirementAccount) would exponentially increase the complexity of Bank.

"Good" Example

Main Class: Bank (high level) / Accounts (low level)

To correct the above issues, a layer of abstraction between the various types of accounts and the high-level Bank class is added. In this case, a simple BasicAccount interface is added between the layers.
Although each account may process transactions in different ways (for example, Federal Reserve Regulation D requires that savings accounts limit the number of transactions per month, but this does not apply to Checking accounts), a simple, uniform interface can be provided. This dramatically simplifies the Bank class, and will allow for new types of accounts to be added easily.

An argument could be made to make BasicAccount an abstract class. In this limited example, this would actually simplify the codebase, by allowing the repeated code found in various versions of deposit() and withdraw() to be moved to a single location. In that setup, classes which require checks/validation before accepting a deposit or withdraw could make those and then delegate to the abstract class.
However, in a more complete system, there may very well be scenarios where this structure would not work (for example, HSA/IRA/Business/Credit accounts may have very different deposit or withdrawal structures). Therefore, the class is left as an interface, as that structure makes the example clearer (it is essential to clarify the interface as existing primarily as a layer between Bank and the Account classes).
Fill in the blanks to complete the code.
Now, to test your knowledge of the SOLID Principles, take this quiz.
Computational Geometry Application

Graphical Application

+ draw()

+ area(): double

Rectangle

GUI

CSC/ECE 517 Lecture Notes
© 2025, Edward F. Gehringer
2
Week 8
Object-Oriented Languages and Systems

