
Week 6 Object-Oriented Design and Development 1

Testing in Rails

All Rails projects start with a test directory. It contains subdirectories for

various kinds of tests.

• Unit tests are used to test a particular class. They call methods of the

class and check whether the expected response is received.

• Functional tests are used to test individual requests made over the

web. They test for conditions such as …

o was the web request successful?
o was the user redirected to the right page?
o was the user successfully authenticated?
o was the correct object stored in the response template?
o was the appropriate message displayed to the user in the

view?

• Integration tests test how different parts of the application interact.

They can be used to test use cases.

• Performance tests are designed for benchmarking and profiling the

code. Like functional tests, they can test individual requests. Like

integration tests, they can test multiple parts of the application.

What kinds of tests are these?

Philosophy: Put as much as possible in the model. This avoids

dependencies between business logic and presentation.

The view can be as complicated as you want, as long as the logic is only to

display information to the user.

Fixtures

In order to run tests, you need data to test with. You could execute code to

set up the objects used in your tests at the beginning of each test. And this

is what factories do. But if objects remain the same between tests, it isn’t

necessary.

https://docs.google.com/forms/d/e/1FAIpQLSeX1VzHYqbTysh_Y9K0CZJuJVVXbqj_JZkJynAqv7eEIx01tg/viewform?usp=sf_link

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 2

Just like we can use .erb files to specify how a view looks, we can use .yml

files to specify objects that exist when a test starts.

.yml is the extension for YAML files (YAML stands for “YAML ain’t markup

language”).

In a Rails project, the fixtures are stored in the test/fixtures directory.

Fixtures can refer to each other. Which lines in categories.yml and

recipes.yml refer to other fixtures?

Some fixtures are generated automatically.

In this directory, which of the lines in categories.yml and recipes.yml do you

think were autogenerated, and which were inserted manually? Why?

The idea is that you can autogenerate a few fixtures, which are instances of

objects of the class, and then write ERB code to generate a lot of others

that have the same basic format.

When are the autogenerated lines actually generated?

Rails loads fixtures automatically when tests are run.

• It removes any existing objects from the database table that the

fixture is an instance of.

• It loads the fixture data into the database table.

• It allows the program to refer to the fixture by name.

What concept that we introduced last week are fixtures an instance of?

How long do we want the data to last when we load it into a testing

database?

https://docs.google.com/forms/d/e/1FAIpQLSeluPRv714U9jvBnqozdhgDJBGGPM1VaXKdJBQ_NtozQBWODw/viewform?usp=sf_link

Week 6 Object-Oriented Design and Development 3

Running tests

We need to set up a test environment explicitly. Let’s look at

config/database.yml.

How many databases does it reference?

It’s important to have a separate test db for a reason we mentioned above.

What reason is that?

Unit tests

Unit tests are typically used to test models. Why are they suitable for

models?

Let’s look at recipe_test, which has two tests to determine whether it is

possible to create a recipe with all fields blank.

It’s good practice to have a unit test for each method in a model.

Each test must include at least one assertion. The assertions should test

everything that is likely to break.

Which of the following scenarios should be tested by unit tests?

What else could you test about recipes?

Many kinds of assertions are available.1

Assertion Purpose

assert(test, [msg]) Ensures that test is true.

assert_not(test, [msg]) Ensures that test is false.

assert_equal(expected, actual,

[msg])
Ensures that expected == actual is true.

1 From http://guides.rubyonrails.org/testing.html

https://docs.google.com/forms/d/e/1FAIpQLSfkB1ohvpDwpZiHbacpIsYceKS56by_HqgNmsB9EHaszqiEzQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeCxiV28B9zsAcryPr6GGFIzQHYTcSWce10rjCSgirpPCu3eA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeFHXQFJGm0EAJ0TfUDLpHMjLxfAfOh7i4KyKDKAvgDa6N_IQ/viewform?usp=sf_link

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 4

Assertion Purpose

assert_same(expected, actual,

[msg])
Ensures that expected.equal?(actual) is true.

assert_nil(obj, [msg]) Ensures that obj.nil? is true.

assert_match(regexp, string,

[msg])

Ensures that a string matches the regular

expression.

assert_raises(exception1,

exception2, ...) { block }

Ensures that the given block raises one of the

given exceptions.

assert_instance_of(class, obj,

[bmsg])
Ensures that obj is an instance of class.

flunk([msg])
Ensures failure. This is useful to explicitly mark a

test that isn't finished yet.

Almost all of these also have negative versions, e.g.,

assert_not_equal(…).

Functional tests

Let’s run a functional test, e.g., category_creation_flow_test.rb.

• One visits the new category page, fills in the form and checks to see
if the new category can be displayed

• One visits the categories page and checks whether the application is
displaying the correct title.

• One visits the new recipe page, fills in the form and checks to see if

the new recipe can be displayed

Let’s run a functional test, e.g., category_creation_flow_test.rb.

class RecipesControllerTest < ActionController::TestCase

 setup do

 @recipe = recipes(:one)

 end

Week 6 Object-Oriented Design and Development 5

 test "should get index" do

 get :index

 assert_response :success

 assert_not_nil assigns(:recipes) Make sure something is assigned

 end

 test "should get new" do

 get :new

 assert_response :success

 end

 test "should create recipe" do

 assert_difference('Recipe.count') do Make sure count changes

 post :create, recipe: { description: @recipe.description,

instructions: @recipe.instructions, title: @recipe.title }

 end

 assert_redirected_to recipe_path(assigns(:recipe))

 end

 test "should show recipe" do

 get :show, id: @recipe

 assert_response :success

 end

 test "should get edit" do

 get :edit, id: @recipe

 assert_response :success

 end

 test "should update recipe" do

 put :update, id: @recipe, recipe: { description:

@recipe.description, instructions: @recipe.instructions, title:

@recipe.title }

 assert_redirected_to recipe_path(assigns(:recipe))

 end

 test "should destroy recipe" do

 assert_difference('Recipe.count', -1) do

 delete :destroy, id: @recipe

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 6

 end

 assert_redirected_to recipes_path

 end

end

Let’s look at a functional test, e.g., recipe_creation_flow_test.rb.

This test uses the following commands provided by the Capybara gem

[SaaS §7.5]:

• visit: navigate the Capybara driver to that particular page. Note

that now the application is being tested from a browser perspective

• fill_in: fill in the particular form field

• select: for the recipe select a particular category from the category

dropdown

• click_button: actuate a button

What kinds of functional tests would be good to have?

Integration tests

Integration tests are used to test interactions among controllers.

No integration tests are auto-generated. But, Rails provides a generator to

get you started:

require 'test_helper'

class UserFlowsTest < ActionDispatch::IntegrationTest

 # test "the truth" do

 # assert true

 # end

end

Look at the ”should use layout” test in

categories_controller_integration_test.rb. This makes sure you

can get a page without a 404 error, etc. We can change the title of the

https://docs.google.com/forms/d/e/1FAIpQLSfXulhd1WJ-NWu408-gKbqWzw0cxQHKY25rH3W0syXxfEdrKA/viewform?usp=sf_link

Week 6 Object-Oriented Design and Development 7

page in application.html.erb to be something other than “Cookbook”,

and see that the test fails.

(When this test runs, it fails because of a wrong title on the cookbook.)

Notice that almost every test requires test/test_helper.rb. This is

included as a mixin, so that the functionality is available to every test.

A good description of almost everything we have covered today is in “A

Guide to Testing Rails Applications.” Mocks and stubs are an alternate

way of setting up tests, which allows things to be tested that do not yet

exist, or are too expensive or destructive to access.

• Stubs are objects where, if someone calls this method on you, this is
what you’re going to respond with — and that’s it. It’s a stand-in for
some other object. Just returns canned data.

• Mocks are things like supporting services: if you are testing an
emailer, it would normally send email, but in this case it doesn’t, and
acts like it did. “Let’s not, & say we did.” They verify that a particular
method was called.

A readable description of mocks and stubs can be found at Code with

Jason; Jesus Castello has a good video description. The SaaS text covers

them in Sections 8.3 and 8.4.

Now, test your knowledge of the different kinds of tests by filling out this

form

http://guides.rubyonrails.org/testing.html
http://guides.rubyonrails.org/testing.html
https://www.codewithjason.com/rspec-mocks-stubs-plain-english/
https://www.codewithjason.com/rspec-mocks-stubs-plain-english/
https://www.youtube.com/watch?v=oyMPzA-ZWkE
https://docs.google.com/forms/d/e/1FAIpQLSd83iHMv6njy3uYGnmjFRgkxu2AhL8tAXwu9dP3uab9Gqs_mQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSd83iHMv6njy3uYGnmjFRgkxu2AhL8tAXwu9dP3uab9Gqs_mQ/viewform?usp=sf_link

