

Week 11 Object-Oriented Design and Development 1

Cohesion and Coupling

Let’s consider the boundaries between
classes—what functionality should be in one
class vs. in another.

We want to maximize cohesion and minimize
coupling.

Outline for Week 11

I. Cohesion & coupling

 A. Maximizing cohesion

 B. Separation of
responsibility

 C. Minimizing coupling

 D. The Law of Demeter

II. Creational patterns

 A. Factory Method

 B. Abstract Factory

Maximizing cohesion

The basic guideline of class design is,

Every class should be responsible for doing one thing only and
doing it well.

Readers should be able to understand the behavior of the class
without reading the code.

The fact that all the behavior of a class is closely related is called
“cohesion.”

Another example is a “god” class that controls all the other objects in
the program. The objects are reduced to mere data-holders.

A common problem is when code to check for a condition is littered
throughout the system, so that to understand a class, the reader
needs to read about several unusual conditions. Here is an example
from Expertiza.

Separation of responsibility

It is not always clear which class should do what. Sometimes we
need to consider the advantages and disadvantages of each
assignment of responsibility.

Consider these examples.

https://docs.google.com/document/d/11ncxWtgHQA3MpiBzOELbw6zvokDkBXA4EUUlbKsZt4U/edit?usp=sharing

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 2

Example 1: When an array of objects needs to be sorted, the objects
need to be compared to each other.

• Should the objects know how to compare themselves to other
objects with a method similar to String’s

compareTo(Object) method, or

• should a separate object, such as the Comparator, be

responsible for doing the comparing?

public class Comparator {

 public int compare(String o1, String o2) {

 return s1.compareTo(s2);

 }

 public int compare(Integer o1, Integer o2) {

 int i1 = o1.intValue();

 int i2 = o2.intValue();

 return i1 – i2;

 }

 ...compare methods for other types of data...

}

Submit your answer here.

For example, the Array class in the java.util package includes

two methods that sort arrays of objects. One method uses the
compareTo(Object) method of each object and the other uses a

Comparator to do the comparing.

Example 2: Consider a LinkedList implemented from Nodes.

Each Node consists of data and a link (next).

When your program traverses a list, which object is responsible for
keeping track of where it is?

https://docs.google.com/forms/d/e/1FAIpQLSfam7oAGxxYSLrNbNwlSXQwkaNRfvf7rDZ-0Gxw7onTzQgUow/viewform?usp=sf_link

Week 11 Object-Oriented Design and Development 3

• The client could keep a reference to the current node, and
dereference next to move to the next node.

• The LinkedList object could keep a reference to the current

node

 Then the client would ask the list—

◦ for the data in the current node, and
◦ to move to the next node (causing the list to update its
current pointer).

• A third object could keep track of where the program is in the
list.

Then the client would ask the third object—

◦ for the data in the current node, and
◦ to move to the next node (causing the 3rd object to update its
current pointer).

Which approach is best? Vote here.

• What, if anything, is wrong with the first one?

• What, if anything, is wrong with the second one?

• What, if anything, is wrong with the third one?

Guideline 1: Different responsibilities should be divided among
different objects.

Guideline 2: Encapsulation. One class should be responsible for
knowing and maintaining a set of data, even if that data is used by
many other classes.

Corollary: Data should be kept in only one place.

https://docs.google.com/forms/d/e/1FAIpQLSdAuSn2IRtwv3fUBi905Yk2cjnSzOGYlIYGj1WicOZBVOxmwA/viewform?usp=sf_link

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 4

One class should be chosen to manipulate a particular type of data.
Other classes must ask this class when they need to use or change
the data.

Let’s see what happens if this guideline is not followed.

For example, suppose you have an object of class Department that

is responsible for maintaining a collection of Employee objects, held

in an ArrayList.

Other objects may need to access the Employee objects.

The Department would have a getEmployees method that returns

the ArrayList of Employee objects.

What is wrong with this approach?

How can this risk be avoided?

1. Have the getEmployees method return an ArrayList of the

Employees, but make it a new ArrayList that is a shallow clone

of the Department's ArrayList.

2. Assuming that other objects rarely need all the Employee objects,

have a “getter” method that finds and returns an employee
specified by particular criteria.

3. Have the Department class manipulate the Employee objects.

Clients have to ask the Department for any details regarding

Employees that they need.

4. Replace the getEmployees method with an iterator method

that returns an Iterator over the ArrayList.

The principle of encapsulation states that the Department should

never let other classes see the actual ArrayList, but only the data

in the ArrayList.

Week 11 Object-Oriented Design and Development 5

Guideline 3: Information Expert pattern. Assign a responsibility to
the class that has the data needed to fulfill that responsibility.

“Ask not what you can do to an object; ask what the object can do to
itself.”

Guidelines 2 and 3 establish that data should not be manipulated in
more than one place.

Similarly, code should not be duplicated in more than one place.

Guideline 4: The DRY principle. Code should not be duplicated. A
given functionality should be implemented only in one place in the
system.

Why is this a good guideline?

Minimizing coupling

Classes frequently need to be modified.

They should be written in such a way that changing one class is not
likely to break other parts of the code.

Guideline 5: Design your classes so that they can handle change.

The idea is to define your variables and values to have the widest
possible type rather than the narrowest type.

The widest possible type in Java is an interface that can be
implemented by any number of classes.

Here is an example of an e-mail sender that comes in a high-coupling
and low-coupling package.

Look at the difference between the two packages and answer these
questions.

https://docs.google.com/forms/d/e/1FAIpQLSej-QqHUn8lZ2qohhVhpN1WcO3hJnwXK9QZHRL64j5fYOX-uA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSej-QqHUn8lZ2qohhVhpN1WcO3hJnwXK9QZHRL64j5fYOX-uA/viewform?usp=sf_link

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 6

Guideline 6: Do not use class methods when instance methods will
suffice.

What are some ways that class variables or methods can be used?

Overuse of class methods increases coupling between classes.

Functionality that should be a method of one class is in another class,
where no object is a receiver. This means that some of the
responsibilities of the class are actually implemented in other classes.

The Law of Demeter

Long chains of method calls mean there is a large amount of coupling
between classes.

Consider this approach to getting a bank balance:

Balance balance = atm.getBank(b).getBranch(r).

getCustomer(c).getAccount(a).getBalance();

Assume that b, r, c, and a are all strings.

How many classes does the calling class need to know about?

Another way to handle this would be to code,

Balance balance = atm.getBalance(b, r, c, a);

Now only the ATM class, not the caller, needs to worry about the
existence of the branch, the customer account, etc.

The Law of Demeter says that a class should only send messages to

1. this object itself
2. this object’s instance variables
3. the method’s parameters
4. any object the method creates
5. any object returned by a call to one of this object’s methods
6. the objects in any collection that falls into these categories

It should not send messages to objects that are returned by calls to
other objects.

https://docs.google.com/forms/d/e/1FAIpQLScaybxjv2jbfu44DB9gML9NVvDszpIAfEL9K5oXZ4E4k1EdKg/viewform?usp=sf_link

Week 11 Object-Oriented Design and Development 7

This is also a good organizational principle. Consider what used to
happens when I wanted to retrieve or send back homework to off-
campus students. I just phoned Eva Boyce and she took care of it …

Here is an exercise on the Law of Demeter.

Creational patterns

Factory Method design pattern

Factory Method is a creational pattern—that is, a pattern that is used
for creating objects.

As we know, in o-o languages, objects can be created with some kind
of new method.

Calling new is fine if the calling code knows what kind of object it

wants to create. But a lot of times it doesn’t.

Suppose, for example, that the code is copying a diagram, which
consists of Shapes. If it gets in a loop and copies the shapes one by

one, you’d need a big if statement to decide which kind of object to

create.

Well, better to encapsulate that logic in a creation method, rather than
to expose it at the call site.

Then the client only needs to get in a loop calling the getShape()

method, and each time, the right kind of object will be created.

The method that creates the object could even be a static method

of the class that returns an instance of that class. This has two
advantages over using constructors:

1. The “new” object might in fact be a reused object that was
previously created (think “buffer pool”).

2. The object that is created might actually be a subclass object.

In any case, the client “is totally decoupled” from the code that
creates the object.

https://docs.google.com/forms/d/e/1FAIpQLSdjaSPtDX8vNfpPWvvyAy63_1ar6aNPN-mHELE_1B-ABA_g2Q/viewform?usp=sf_link
https://www.tutorialspoint.com/design_pattern/factory_pattern.htm
https://sourcemaking.com/design_patterns/factory_method

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 8

Choose one of the following two exercises for Factory Method.

• An example on creating wifi or Bluetooth streaming connections.

• An example that creates postcodes for the US, India, and the UK.

The Abstract Factory design pattern

The Factory (or Factory Method) pattern is good for creating single
objects of a specific type, as long as those objects don’t have to
“match” any other objects.

But a lot of times we do need objects to “match.”

• User interfaces need all of their widgets to have the same “look
and feel.”

• Web (or print) pages have a certain style, and all the elements
on the page need to match that style.

• A language run-time environment needs to make the
appropriate calls to the operating system it is running on.

In all these cases, instantiated objects all need to be from the right
“family.”

My favorite example of this comes from Refactoring Guru. When a
shop sells a set of furniture to a buyer, it’s important that the set
“match.”

Let’s look again at the entities in the pattern.

• The client—the code “using” the pattern—has-an Abstract
Factory.

• The Abstract Factory is an interface that contains a method for
creating each different “product.”

• One or more Concrete Factories implement the Abstract
Factory interface.

o Hence, each concrete factory implements a method for
creating each different “product.”

https://docs.google.com/spreadsheets/d/1TeclvRC75DApRAxaH9gnt8FyoGpZXx3dMjY3QaqOFEg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TeclvRC75DApRAxaH9gnt8FyoGpZXx3dMjY3QaqOFEg/edit?usp=sharing
https://refactoring.guru/design-patterns/abstract-factory

Week 11 Object-Oriented Design and Development 9

• When the various createProduct methods of a particular
Concrete Factory are invoked, they create objects that “match.”

o Specifically, the objects “match” because they implement
the variant defined by the same concrete factory.

Now, to make sure you are following, answer these questions about
the furniture example.

• What is a “modern sofa”? An abstract product, concrete
product, etc.?

• What is a “chair”?

• What is a “Victorian furniture factory”?

• What does the method createCoffeeTable return?

Again, there are two choices of exercise:

• An example that builds applications in the Semantic or Angular
framework

• An example that creates phone numbers and postcodes for the
US or the UK.

https://docs.google.com/forms/d/e/1FAIpQLScxprBxR-LDl7qE4e2wd0YLlEjM1WRNtp62b4VhGvGRUmRMfQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSf_omt6RrAPTE36BRZZbDmLKNVznWU7EqBV_xtK1vSUCW1M2A/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScwWHQxLsb43kHuzZo5lTNBvDrwJ9ItzTdj-20H8vbB18UMhQ/viewform?usp=sf_link

