
CSC 517: Elegance and
Inheritance, Part I

Titus Barik (tbarik@ncsu.edu)

Fall 2011

Ice Cream and Cake and Cake

•What is the object-oriented way of
getting rich?

• Inheritance.

Interfaces

• Java (and C#) don’t have multiple
inheritance, but how can we simulate it?

• “Program to an interface, not an
implementation.” (GoF)

•Which is preferred:
– ArrayList list = new ArrayList();
– List list = new ArrayList();

Generics

• Even better:
– ArrayList list = new ArrayList<Shape>();

• How do generics help us?
– Shape s = new Shape();
– list.add(s);
– Shape q = List.get(0)

• Generics allow us to statically communicate
type information to the compiler; use them
everywhere.

Inheritance is tricky.
• We have done examples with inheritance, but when should

it be used?
• Is Y an X? What does it mean for Y to be an X? (is-a

relationship).
• Temptations:

– Code reuse.
– Subclassing for specializing.
– Public interface.
– Polymorphism (collections).

• In theory, this is great. But is it sufficient? Is it even a good
reason?

Inheritance is overused.

•When all you have is a hammer,
everything you see is a nail.

•What about the code reuse example?
• Inheritance breaks encapsulation. Why?
• Favor composition over class inheritance.

Is a Square a Rectangle?

Is a Square a Rectangle?

Class Rectangle {

 private int width, height;

 public

 Rectangle(int w, int h);

 public int getWidth();

 public setWidth(int width);

 ...

 public setSize(int w, int h);

}

http://www.objectmentor.com/resources/articles/lsp.pdf

Uh-oh Spaghettios
• Constructor: Square(int s);
• setSize(int w, int h)

– Let’s remove it, but derived classes requiring changes to base
classes already indicates a bad design.

• setHeight(5) => changes width.
– Are we now okay?

• r.getWidth() * r.getHeight()

Validity is not instrinsic and cannot be viewed in

isolation.
A square is a rectangle, but a square object is not a rectangle

object.

Inheritance Formalization

• Liskov substitution principle, easy in theory,
difficult in practice to get right.

• Let q(x) be a property provable about objects x of
type T. Then q(y) should be true for objects y of
type S where S is a subtype of T.

• You’re probably thinking: “I hope this isn’t on
the exam.”

• But you would be wrong.

Direct From the Java API
• Remember code reuse? Inheritance is all or nothing.
• “Because Properties inherits from Hashtable, the put

and putAll methods can be applied to a Properties
object. Their use is strongly discouraged as they allow the
caller to insert entries whose keys or values are not
Strings. The setProperty method should be used
instead. If the store or save method is called on a
“compromised” Properties object that contains a non-String
key or value, the call will fail.”

• Didn’t you get the memo?
• Yeah. I got the memo. And I understand the policy. And the

problem is just that I forgot the one time. And I've already
taken care of it so it's not even really a problem anymore.

Real-World Violations of LSP

• In practice*:
– Java violates LSP (unmodifiableList).
– Ruby violates LSP (dup method).
– C# probably violates LSP.

Ruby Example
irb> 5.respond_to? :dup

=> true

irb> 5.dup

TypeError: can't dup Fixnum

 from (irb):1:in `dup'

 from (irb):1

• And I would have gotten away with it too, if it

weren't for you meddling kids…

Real-World Violations of LSP?

• Workarounds:
– Java fine print: “Returns an unmodifiable view of the specified

list. This method allows modules to provide users with "read-only" access
to internal lists. Query operations on the returned list "read through"
to the specified list, and attempts to modify the returned list, whether

direct or via its iterator, result in an UnsupportedOperationException. “
– Ruby dup method (found in Object). It’s

dynamic, get over it. We don’t have a
contract.

– C# workaround is to seal everything, but this
breaks the open-closed principle.

	Slide Number 1
	Theory vs. Practice
	Multiple Inheritance
	Multiple Inheritance
	C3 Linearization (Perl, Python)
	Merge Pre-requisites
	Merge Operation
	Merge Example, 1
	Merge Example, 2
	Merge Example, 3
	Polymorphism
	Dynamic Method Invocation
	Overloading vs. Overriding
	A Fruity Example
	A Fruity Example
	What about now?
	Last One
	Invocation Summary
	Ice Cream and Cake and Cake
	Interfaces
	Generics
	Inheritance is tricky.
	Inheritance is overused.
	Is a Square a Rectangle?
	Is a Square a Rectangle?
	Uh-oh Spaghettios
	Inheritance Formalization
	Direct From the Java API
	Real-World Violations of LSP
	Ruby Example
	Real-World Violations of LSP?
	Slide Number 32

