
Week 6 Object-Oriented Design and Development 1

Testing in Rails

All Rails projects start with a test directory. It contains subdirectories for
various kinds of tests.

 Unit tests are used to test a particular class. They call methods of the
class and check whether the expected response is received.

 Functional tests are used to test individual requests made over the
web. They test for conditions such as …

o was the web request successful?
o was the user redirected to the right page?
o was the user successfully authenticated?
o was the correct object stored in the response template?
o was the appropriate message displayed to the user in the

view?

 Integration tests test how different parts of the application interact.
They can be used to test use cases.

 Performance tests are designed for benchmarking and profiling the
code. Like functional tests, they can test individual requests. Like
integration tests, they can test multiple parts of the application.

What kinds of tests are these?

Philosophy: Put as much as possible in the model. This avoids
dependencies between business logic and presentation.

The view can be as complicated as you want, as long as the logic is only to
display information to the user.

Fixtures

In order to run tests, you need data to test with. You could execute code to
set up the objects used in your tests at the beginning of each test. And this
is what factories do. But if objects remain the same between tests, it isn’t
necessary.

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 2

Just like we can use .erb files to specify how a view looks, we can use .yml
files to specify objects that exist when a test starts.

.yml is the extension for YAML files (YAML stands for “YAML ain’t markup
language”).

In a Rails project, the fixtures are stored in the test/fixtures directory.
Fixtures can refer to each other. Which lines in categories.yml and
recipes.yml refer to other fixtures?

Some fixtures are generated automatically.

In this directory, which of the lines in categories.yml and recipes.yml do you
think were autogenerated, and which were inserted manually? Why?

The idea is that you can autogenerate a few fixtures, which are instances of
objects of the class, and then write ERB code to generate a lot of others
that have the same basic format.

When are the autogenerated lines actually generated?

Rails loads fixtures automatically when tests are run.

 It removes any existing objects from the database table that the
fixture is an instance of.

 It loads the fixture data into the database table.

 It allows the program to refer to the fixture by name.

What concept that we introduced last week are fixtures an instance of?
ActiveRecord

How long do we want the data to last when we load it into a testing
database? As long as the tests run.

Week 6 Object-Oriented Design and Development 3

Running tests

We need to set up a test environment explicitly. Let’s look at
config/database.yml.

How many databases does it reference?

It’s important to have a separate test db for a reason we mentioned above.
What reason is that?

Unit tests

Unit tests are typically used to test models. Why are they suitable for
models?

Let’s look at recipe_test, which has two tests to determine whether it is
possible to create a recipe with all fields blank.

It’s good practice to have a unit test for each method in a model.

Each test must include at least one assertion. The assertions should test
everything that is likely to break.

Which of the following scenarios should be tested by unit tests?

What else could you test about recipes?

Many kinds of assertions are available.1

Assertion Purpose

assert(test, [msg]) Ensures that test is true.

assert_not(test, [msg]) Ensures that test is false.

assert_equal(expected, actual,

[msg])
Ensures that expected == actual is true.

1 From http://guides.rubyonrails.org/testing.html

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 4

Assertion Purpose

assert_same(expected, actual,

[msg])
Ensures that expected.equal?(actual) is true.

assert_nil(obj, [msg]) Ensures that obj.nil? is true.

assert_match(regexp, string,

[msg])

Ensures that a string matches the regular

expression.

assert_raises(exception1,

exception2, ...) { block }

Ensures that the given block raises one of the

given exceptions.

assert_instance_of(class, obj,

[bmsg])
Ensures that obj is an instance of class.

flunk([msg])
Ensures failure. This is useful to explicitly mark a

test that isn't finished yet.

Almost all of these also have negative versions, e.g.,
assert_not_equal(…).

Functional tests

Let’s run a functional test, e.g., category_creation_flow_test.rb.

 One visits the new category page, fills in the form and checks to see
if the new category can be displayed

 One visits the categories page and checks whether the application is
displaying the correct title.

 One visits the new recipe page, fills in the form and checks to see if
the new recipe can be displayed

Let’s run a functional test, e.g., category_creation_flow_test.rb.

class RecipesControllerTest < ActionController::TestCase
 setup do
 @recipe = recipes(:one)
 end

Week 6 Object-Oriented Design and Development 5

 test "should get index" do
 get :index
 assert_response :success
 assert_not_nil assigns(:recipes) Make sure something is assigned

 end

 test "should get new" do
 get :new
 assert_response :success
 end

 test "should create recipe" do
 assert_difference('Recipe.count') do Make sure count changes
 post :create, recipe: { description: @recipe.description,
instructions: @recipe.instructions, title: @recipe.title }
 end

 assert_redirected_to recipe_path(assigns(:recipe))
 end

 test "should show recipe" do
 get :show, id: @recipe
 assert_response :success
 end

 test "should get edit" do
 get :edit, id: @recipe
 assert_response :success
 end

 test "should update recipe" do
 put :update, id: @recipe, recipe: { description:
@recipe.description, instructions: @recipe.instructions, title:
@recipe.title }
 assert_redirected_to recipe_path(assigns(:recipe))
 end

 test "should destroy recipe" do
 assert_difference('Recipe.count', -1) do
 delete :destroy, id: @recipe

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 6

 end

 assert_redirected_to recipes_path
 end
end

Let’s look at a functional test, e.g., recipe_creation_flow_test.rb.
This test uses the following commands provided by the Capybara gem
[SaaS §7.5]:

 visit: navigate the Capybara driver to that particular page. Note
that now the application is being tested from a browser perspective

 fill_in: fill in the particular form field

 select: for the recipe select a particular category from the category
dropdown

 click_button: actuate a button

What kinds of functional tests would be good to have?

Integration tests

Integration tests are used to test interactions among controllers.

No integration tests are auto-generated. But, Rails provides a generator to
get you started:

require 'test_helper'

class UserFlowsTest < ActionDispatch::IntegrationTest
 # test "the truth" do
 # assert true
 # end
end

Look at the ”should use layout” test in

categories_controller_integration_test.rb. This makes sure you
can get a page without a 404 error, etc. We can change the title of the

Week 6 Object-Oriented Design and Development 7

page in application.html.erb to be something other than “Cookbook”,
and see that the test fails.

(When this test runs, it fails because of a wrong title on the cookbook.)

Notice that almost every test requires test/test_helper.rb. This is
included as a mixin, so that the functionality is available to every test.

A good description of almost everything we have covered today is in “A
Guide to Testing Rails Applications.” Mocks and stubs are an alternate
way of setting up tests, which allows things to be tested that do not yet
exist, or are too expensive or destructive to access.

 Stubs are objects where, if someone calls this method on you, this is
what you’re going to respond with — and that’s it. It’s a stand-in for
some other object. Just returns canned data.

 Mocks are things like supporting services: if you are testing an
emailer, it would normally send email, but in this case it doesn’t, and
acts like it did. “Let’s not, & say we did.” They verify that a particular
method was called.

A readable description of mocks and stubs can be found at Code with
Jason; Jesus Castello has a good video description.

The SaaS text covers them in Sections 8.3 and 8.4. It also covers fixtures
in Section 8.6. Fixtures can be brittle; if you change the schema of a table,
you have to change the associated fixtures—and possibly other fixtures
that reference the fixtures you changed.

Now, test your knowledge of the different kinds of tests by filling out this
form

Week 7 Object-Oriented Design and Development 1

Design

What do we mean by program design?
Deciding on the relationship between major
entities in the program.

Why do we worry about design when writing a
program? Why isn’t it enough that the
program works?

Outline for Week 7

I. Design criteria

II. The CRC-card
 method

 Flight reservation

 Address book

 Course registration

Suppose the code is never intended to be read by anyone else, or
used again?

O-o design: The CRC-card method

In writing object-oriented software, it is very important to get the
design right.

If the design is wrong,

 Objects of one class may need to make extensive use of
features of another class (“high coupling”).

It’s OK if objects of one class merely use public features of
another class. But if you find your code depending on the
implementation of the other class, your code becomes
unmaintainable.

 Methods and instance variables grouped in one class have little
relationship with each other (low cohesion).

To get the design right, we should be careful to choose our classes.

The goals of this process are to—

 Discover classes.
 Determine the responsibilities of each class.
 Describe the relationships among the classes.

CSC/ECE 517 Lecture Notes Fall 2024 2

To discover the classes, we can look for the nouns in the task
description (sometimes called the “requirements document”).

For example, if I say,

The function of the system is to allow bus riders to plan a route
from origin to destination,

what might be the classes? Route, Location

When choosing classes, make sure that what you identify …

 is a singular noun,
 does not really have the same functionality as some other

class,
 is not simply a primitive type or a library object,

Now let’s consider a sample system.

Example 1. Flight reservation

Requirements for the Flight Reservation System

 The mission is to allow round-trip airline tickets to be bought over
the Web.

 Each customer specifies an origination airport, a destination
airport, and dates for outbound and return flights.

 The customer reserves one outbound flight and one return flight
from a menu presented by the system.

 Each choice that the system presents consists of one or more
flight segments (there may be a stop or a change of planes).

 The customer may buy tickets for one or more passengers.

 No more tickets can be sold for a flight than there are seats on the
plane.

 Each passenger is assigned to a specific seat.

 The system calculates the total cost of the tickets by adding the
cost of the individual segments.

 If dissatisfied with the cost, the customer may select alternate
flights.

Week 7 Object-Oriented Design and Development 3

 After a customer has bought a ticket, (s)he will be e-mailed a
confirmation

Take a couple of minutes working with your group to identify the
classes. Then enter your class names here.

Also name some nouns that are not classes.

(Note: Be sure to avoid this common misconception: Something that
is an attribute of another class may be a class itself!)

Example 2. Address book

Here is a very complete example of an address book.

We will work our way from the requirements statement, through use
cases to CRC cards.

Responsibilities and collaborators

Finding the classes is only the first step in the design process.

Next, we need to look for responsibilities, which are usually verbs in
the task description.

For each responsibility, there may be one or more collaborators—
classes that need to be called to help fulfill the responsibility.

In summary, we have—

 Classes: To find the objects, look for the nouns.
 Responsibilities: Things a class knows or can do.
 Collaborators: Other classes that are directly involved in

fulfilling these responsibilities.

Now let’s consider some responsibilities of the Customer class in the
Flight Reservation system. Which collaborator(s) does each one
have? Enter responsibilities and collaborators here.

CRC cards

A common design practice is to write information for each class on a
separate card. A card has the form …

CSC/ECE 517 Lecture Notes Fall 2024 4

Class Name

Responsibility 1 Collaborator(s) 1

Responsibility 2 Collaborator(s) 2

… …

Responsibility n Collaborator(s) n

We don’t have a good way for you to share entire CRC cards with the
rest of the class, but you can simulate a CRC card by filling out this
class/responsibility/collaborator form repeatedly.

Common errors in CRC-card design

In designs created by students, certain errors keep coming up over
and over. Here are some examples.

1. Using a class name that is not a singular noun.

“Customers”, “Segments”, “Buy”

2. Naming a system class as a key abstraction of the program.

“String”, “Date”

3. Defining a new class where an existing (usually primitive) object
would suffice.

“Cost”, “Time”

4. Thinking that something can’t be a key abstraction because it is
part of a larger abstraction.

“Seat” can’t be a key abstraction, because it’s part of the plane.

“Wheel” can’t be a key abstraction, because it’s an attribute of
the plane.

5. Confusing inheritance with composition.

“Seat” inherits from “Plane”

Week 7 Object-Oriented Design and Development 5

6. Confusing an object with an aggregation of such objects.

Responsibilities of Seat include knowing the available number
of window, aisle, and exit-row seats

7. Confusing ambiguity with synonyms.

Ambiguous: 1 term, 2 meanings

Synonyms: 2 terms, 1 meaning

“Segment” and “leg” are synonyms with regard to flights,
because they mean the same thing.

8. Treating collaboration as a transitive relationship.

Class: Customer

Responsibility: Buy ticket

Collaborators: Passenger, Flight, Segment, Airport

Example 3. Invitations

Consider inviting someone to join your team in Expertiza. What
should be the responsibilities of an Invitation class?

Send an invitation (be sent)
Accept an invitation (be accepted)
Decline an invitation (be declined)
Retract an invitation (be retracted)

What does the code need to do when an invitation is sent?

 Verify that there is room on your team.

(Should you be allowed to issue more invitations than you have places on
your team? Probably not.)

 Verify that the invitee is a participant in the assignment.

 Set the reply status to W.

What does the code need to do when someone accepts an invitation?

CSC/ECE 517 Lecture Notes Fall 2024 6

o Verify that there is room on the team.

o Add the invitee to the team.

o Set the reply status to A.

o [Email the inviter]

 What do you need to do when you decline an invitation?

o Set the reply status to D.

o [Notify the sender.]

Now let’s see how the current Invitation class is implemented in
Expertiza.

Does it give us any hints on what else needs to be done when an
invitation is accepted?

What else does the code need to do when someone accepts an
invitation?

Now let’s design the ProjectTopic class. What are the
responsibilities of ProjectTopic?

 Create a topic.

 Select a topic.

 Acquire a topic (if you were waiting for one).

 Relinquish a topic.

Now let’s look at the current SignupTopic class.

Do we need an invitations_controller?

Week 8 Object-Oriented Languages and Systems 1

Design Smells

“Uncle Bob” Martin, the architect of the
SOLID principles, identifies several “design
smells” that are symptomatic of “rotting
software.”

Outline for Week 8

I. Design smells

II. Single Responsibility

III. Open-Closed

IV. Liskov Substitution

V. Interface Segregation

VI. Dependency Inversion
Rigidity

The system is hard to change because every change forces changes
to other parts of the system.

You start to make what seems to be a simple change, but as you get
into it, you find that it impacts more code than you expected. And
when you fix the code in the other places, it affects still more
modules. What principle or guideline from past weeks does this
violate?

Fragility

A single change tends to “break” the program in many places.

Often those places have little apparent relation to the place where the
code is changed. Patching those modules may make the problem
worse later on.

Immobility

Parts of the code could be useful in other systems, but it is easier to
rewrite them than to extricate them and reuse them.

Viscosity

When changes need to be made, the design is hard to preserve.

It is easier to hack a change into the code than to make it in a way
that follows the principles of the design. Example: Instead of
subclassing a base class again, use case statements to add new
functionality.

CSC/ECE 517 Lecture Notes © 2025, Edward F. Gehringer 2

Needless complexity

The design includes elements that aren’t currently useful. Maybe the
designer expects them to be useful later on …

Needless repetition

What’s another name for this problem?

Opacity

A module is difficult to understand, not written in a clear and direct
manner.

Code tends to become more opaque as it ages, because no one is
intimately familiar with it any longer.

SOLID Principles

The SOLID principles are an acronym for five design principles that
are not patterns, but just rules to be followed when designing
programs.

The Single-Responsibility Principle

[SaaS §11.3] The Single-Responsibility Principle is

A class should have only one reason to change.

We have already seen this principle. Good cohesion dictates that,
“Every class should be responsible for doing one thing only and doing
it well.”

But what does “doing one thing only” mean? Martin says it means
that a class should have only one reason to change.

One bad example, that is common in student code, is a controller
class that does calculations related to the application’s business
logic.

Another of Martin’s examples is a Rectangle class that has two
responsibilities: calculate area and draw itself.

Week 8 Object-Oriented Languages and Systems 3

Two applications use Rectangles. Only one needs to draw the
rectangle.

In a static language, the GUI class would have to be included in both
applications. Changes to the draw()method would force the
computational-geometry application to be recompiled, even though it
doesn’t use the method.

A dynamic language doesn’t have these problems, but still in order to
change the view, the model would have to change.

Now, it is possible to go overboard with this principle. Too many
classes are bad, too. The ideal number of methods for a class ≠ 1.

Martin clarifies what he means by a single reason for change: “Gather
together the things that change for the same reasons. Separate those
things that change for different reasons.”

Here’s an example of a CityMap class.

"Bad" Example

Main class: CityMap

In this example, the CityMap class represents a map consisting of a
list of cities with various attributes. Although this represents a single
logical object, the CityMap class takes on several very separate
pieces of functionality which should, according to this principle, be
divided into several classes. Those functionalities include managing
the list of cities (add and remove), drawing the map on the screen,
and calculating the total population.

"Good" Example

Computational
Geometry
Application

Graphical
Application

Rectangle

+ draw()
+ area(): double

GUI

CSC/ECE 517 Lecture Notes © 2025, Edward F. Gehringer 4

The good example simply splits the CityMap class into two classes,
Map and CityList. CityList maintains the ArrayList of cities
and also allows calculating the total population. The Map class
focuses solely on drawing the map on a screen. This fixes the issues
with the "bad" example, as each class now focuses solely on
operations related to one set of data.

First, say which components of the “bad” example should go into
each class in the “good” example.

Then, fill in the blanks in the Ruby or Java “good” example.

The Open-Closed Principle

The open-closed principle can be expressed as follows:

Software entities (classes, modules, functions, etc.) should be open
for extension, but closed for modification.

Why is it harder to add new functionality to a program when an
existing class needs to change? Unfortunately, this approach may
require other classes that depend on the changed classes to change,
which in turn may require still other changes. These changes may
introduce new errors into the code. Better to minimize the amount of
change to working code and instead to extend that code by adding
new classes that incorporate the changes.

Keeping the data of a class private helps assure that the class is
closed for modification.

Here is a bad and a good example of the Open-Closed principle.

Bad Example

Main class - ProgramRunner

In this example, ProgramRunner.java is responsible for running
programs from several programming languages. Two classes
(PythonProgram and RubyProgram) implement the Program
interface, which has a getCode() and a getType() method.

Week 8 Object-Oriented Languages and Systems 5

ProgramRunner has to figure out which type of program it has been
given in order to run it, and therefore has an ugly if statement
followed by a separate method to run every type of program.

In production, such a system would quickly grow unwieldy, as adding
any type of program requires adding to the if statement and adding
new methods to the ProgramRunner, breaking the Open/Closed
Principle.

Good Example

The Good example corrects the above issues by simply adding a
runProgram" method to the Program interface.

This renders the entire ProgramRunner class obsolete, and allows
each class to handle its own execution, rather than being tightly
coupled to a ProgramRunner class.

As a result of this change, new Program types can be added without
needing to also update the ProgramRunner class.

Fill in the rest of the code for the good example in Java (or in Ruby).

If classes are not to change, then you need to be careful to design
them so they don’t need to. This suggests …

The Liskov Substitution Principle

[SaaS §11.5] A short statement of the Liskov Substitution Principle is,

Subtypes must be substitutable for their base types.

If they are not, you have to be careful in writing code that uses the
base type. One example from StackExchange:

Suppose you have a class Task and a subclass ProjectTask.
Task has a close() method that doesn’t work for ProjectTask.

Here is some code that uses close().

public void processTaskAndClose(Task taskToProcess)
{
 taskToProcess.execute();
 taskToProcess.dateProcessed = DateTime.now;

CSC/ECE 517 Lecture Notes © 2025, Edward F. Gehringer 6

 taskToProcess.close();
}

You can’t be sure this code will work if a ProjectTask is passed
to processTaskAndClose. So you need to put some kind of if
statement or case statement around the call to close().

Here’s an exercise involving the LSP.

"Bad" Example

In this example, a Computer object keeps track of its amount of
RAM and its OS version. It also has methods for upgrading the RAM
and updating the OS. Two classes, a DesktopComputer and a
Phone, extend this class and implement its methods.

A ComputerUpgrader object claims to be able to upgrade any
Computer (that is, add more RAM and update the OS), but it really
can't add more RAM to a phone, so it must check to make sure the
Computer object it has been given isn't a Phone.

This violates the LSP, as a Phone cannot fully be substituted for a
Computer.

"Good" Example

The most straightforward method of solving the above problems is to
add a new interface HardwareUpgradable, which is only
implemented by Computers which can have their hardware
upgraded (DesktopComputer can, Phone cannot).

Next, by splitting the upgrade method in ComputerUpgrader into
upgradeRAM (which accepts HardwareUpgradable) and
upgradeOS (which accepts any computer), the issue can be
resolved. No type-checking is necessary.

Fill in the blanks to finish this example in Java (or in Ruby).

The Interface-Segregation Principle

The Single-Responsibility Principle tells us that classes that are too
big are no good. The Interface-Segregation Principle says the same
thing about interfaces. It is,

Week 8 Object-Oriented Languages and Systems 7

Clients should not be forced to depend on methods that they do
not use.

If you know Java, you are probably familiar with the MouseListener
and MouseMotionListener interfaces. Both of them handle
MouseEvents. Why are two listeners needed for MouseEvents,
when all other kinds of events have only one listener interface?

Because many programs don’t track movement of the mouse, and
thus, they can get by with many fewer events.

This video describes the issue of read streams vs. read-and-write
streams.

OK, you might say, this makes sense for Java, but how about Ruby?
Ruby doesn’t even have interfaces!

Indeed, dynamically typed languages don’t need interfaces. Why?

They have duck typing!

The issue, then, is how to give a Ruby class access to the methods it
needs from another class, rather than giving it access to all the
methods, which it would get if it inherited from the class.

The forwardable mixin has a def_delegator method that allows one
Ruby class to use some, but not all, of the methods of the class it
delegates to. This video shows how forwardable can be used to
create a Moderator class that can edit posts, but not create or delete
them.

Here is an exercise involving the ISP.

"Bad" Example

In this example, a single interface, Game is created, for two classes,
SingleplayerGame and MultiplayerGame.

This is on the surface a logical structure. However, in this case, the
methods getServerList and pauseGame, published in the Game
interface, are not used by both clients (as a MultiplayerGame

CSC/ECE 517 Lecture Notes © 2025, Edward F. Gehringer 8

cannot be paused, and a SingleplayerGame does not have
servers).

Because of this mismatch, the SingleplayerGame is forced to
throw an UnsupportedOperationException when
getServerList is called on it, and MultiplayerGame is forced to
throw an UnsupportedOperationException when pauseGame
is called on it.

This demonstrates a violation of the Interface Segregation principle,
as a single, logical but ill-fitting interface is used by several clients,
despite clear incompatibilities.

"Good" Example

This example is derived from the “bad" example. In this case, the
single interface Game was split into three interfaces with a single
method each: BasicGame, OnlineGame, and PausableGame.

With this split, MultiplayerGame can implement BasicGame and
OnlineGame, but it does not need to implement PausableGame (as
it is not pausable), and SingleplayerGame can implement
BasicGame and PausableGame (as it can be paused but is not
online). This corrects the need to throw
UnsupportedOperationExceptions, and follows the ISP by
dividing one general purpose interface into several smaller interfaces.

Fill in the blanks in the “good” Java code (or Ruby code).

The Dependency-Inversion principle

[SaaS §11.6] We have just seen an instance where code depends on
abstractions to decide what kind of object is to be created. Now here
is another situation where code is clearer if it depends on
abstractions.

Any object that uses another object to carry out its work is said to
depend on the other object. A very common layered architecture has
higher-level modules depending on lower-level modules, like this.

Week 8 Object-Oriented Languages and Systems 9

However, the Dependency-Inversion Principle says this is not good.
It says,

 High-level modules should not depend on low-level modules.
Both should depend on abstractions.

 Abstractions should not depend on details. Details should
depend on abstractions.

The reason that it’s bad for high-level modules to depend on low-
level modules is that a change to a low-level module can require a
change to a high-level module.

This makes it hard to contain the damage when editing low-level
modules.

The reason that this is called an “inversion” principle is that it goes
against the advice of other software-development methodologies,
such as Structured Analysis and Design.

Interposing interfaces between the various levels allows either level
to change without affecting the other, assuming that the same
interface is still implemented.

CSC/ECE 517 Lecture Notes © 2025, Edward F. Gehringer 10

The second part of the principle says, essentially, that high-level
modules should not get involved in performing low-level functions.

This v ideo explains that

 the Coca Cola CEO should not deliver products to 7/11, and
 the Ruby ActiveRecord class should not say how an

application’s users table is to be structured.

Just as with the Single-Responsibility and Interface-Segregation
Principles, it is possible to go overboard with Dependency Inversion.

The system should not be filled with single-method classes and
interfaces, nor should there be an interface between every two
classes.

Interfaces should be reserved for the boundaries between layers, or
collections of classes that are otherwise cohesive.

Here is an exercise involving the Dependency-Inversion Principle.

"Bad" Example

Main Class: Bank

Week 8 Object-Oriented Languages and Systems 11

In this example, a Bank class is a high-level class with complex
functionality (redacted for this example). One piece of that
functionality is handling transactions between various accounts
(simple, low-level classes).

The Bank, however, is very tightly coupled with the
CheckingAccount and SavingsAccount classes. Adding
additional account types (such as a MoneyMarketAccount,
InvestmentAccount, or RetirementAccount) would
exponentially increase the complexity of Bank.

"Good" Example

Main Class: Bank (high level) / Accounts (low level)

To correct the above issues, a layer of abstraction between the
various types of accounts and the high-level Bank class is added. In
this case, a simple BasicAccount interface is added between the
layers.

Although each account may process transactions in different ways
(for example, Federal Reserve Regulation D requires that savings
accounts limit the number of transactions per month, but this does not
apply to Checking accounts), a simple, uniform interface can be
provided. This dramatically simplifies the Bank class, and will allow
for new types of accounts to be added easily.

An argument could be made to make BasicAccount an abstract
class. In this limited example, this would actually simplify the
codebase, by allowing the repeated code found in various versions of
deposit() and withdraw() to be moved to a single location. In
that setup, classes which require checks/validation before accepting
a deposit or withdraw could make those and then delegate to the
abstract class.

However, in a more complete system, there may very well be
scenarios where this structure would not work (for example,
HSA/IRA/Business/Credit accounts may have very different deposit
or withdrawal structures). Therefore, the class is left as an interface,
as that structure makes the example clearer (it is essential to clarify

CSC/ECE 517 Lecture Notes © 2025, Edward F. Gehringer 12

the interface as existing primarily as a layer between Bank and the
Account classes).

Fill in the blanks to complete the code.

Now, to test your knowledge of the SOLID Principles, take this quiz.

Week 9 Object-Oriented Languages and Systems 1

Readability

“Programs must be written for people to read,
and only incidentally for machines to
execute.”—Abelson & Sussman

Guideline: Give a variable the narrowest
scope that you can.

Give an example of this principle. Index
variables in loops.

Outline for Week 9

I. Readability

II. Polymorphism
 A. Dynamic method invoc.
 B. Overloading vs. overriding

III. Exercise: Singleton

IV. Exercise: Adapter

Why is this a good principle?

Guideline: Using standard idioms, make code as concise as
possible.

Example: In the following statement, b is a boolean variable:

 if (b == true)
 return true;
 else

 return false;

This statement is far too verbose. An equivalent and much more
readable statement is—

 return b;

In most cases, this can be made even more readable. How? Use a
better name for the variable.

Guideline: Variable names should be neither too short nor too long.

Consider a variable that controls whether a while-loop is exited.

 while (variable) {
 …
 }

What is a good name for this variable? notFound

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 2

Which should be shorter, in general? Variable names or names of
constants?

In general, names that are used less frequently can be longer.

Guideline: Names should be descriptive of the entity they apply to.
They should not be vague or overly general.

Give an example of a bad (variable, method, etc.) name you have
encountered in code that you were refactoring or interfacing to.

Here are some examples from Expertiza.

Guideline: Names should not be redundant.

Suppose course_controller.rb contains a method called
create_course. What should it be? create

Suppose it contains a method called create_section. What
should it be? Section.new (or Section.create, if it is to be
immediately saved to the db).

An excellent discussion of variable naming can be found in Code
Complete, by Steve McConnell, on electronic reserve for this course.

Guideline: Factor out duplicated code.

If a program has two places where the same sequence of instructions
is being executed, it is almost always beneficial to move the
duplicated code into a separate procedure.

Example: Suppose you are developing a class of objects one of
whose responsibilities is to parse an input string, such as a
complicated mathematical expression.

Part of the process of parsing involves checking that the input is valid.
So the class might have a method like this:

Week 9 Object-Oriented Languages and Systems 3

public void parse(String expression)
{
 ...do some parsing...
 if(! nextToken.equals("+")) {
 //error
 System.out.println
 ("Expected +, but found " + nextToken);
 System.exit(1);
 }
 ...do some more parsing...
 if(! nextToken.equals("*")) {
 //error
 System.out.println
 ("Expected *, but found " + nextToken);
 System.exit(1);
 }
 ...
}

How can we clean this code up?

private void handleError(String message) {
 System.out.println(message);

 System.exit(1);
}

public void parse(String expression)
{
 ...do some parsing...
 if(! nextToken.equals("+"))
 unexpectedToken
 ("Expected '+', but found " + nextToken);
 ...do some more parsing...
 if(! nextToken.equals("*"))
 unexpectedToken
 ("Expected '*', but found " + nextToken);
 ...
}

Besides being more readable, this code has another advantage.
What? It is also much easier to change the error handling. For

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 4

example, if you decide later that your parser needs to throw an
exception instead of printing a message and quitting, you only need
to change the code in one place, namely inside the body of the
unexpectedToken method.

Guideline: A method should do only one thing and do it well.

Here's an example of a method to avoid:

void doThisOrThat(boolean flag) {
 if(flag) {
 ...twenty lines of code to do this...
 }
 else {
 ...twenty lines of code to do that...
 }
}

How should we change it?

void doThisOrThat(boolean flag) {
 if(flag)
 doThis();
 else
 doThat();
}

Inheritance vs. delegation

Delegation—where one object passes a message on to another
object—can often achieve the same effect as inheritance. Let’s look
at an example.

Consider the java.util.Stack class. How many operations does
it have? 50 or more

Suppose in a program you want a “pure” stack class—one that can
only be manipulated via push(…) and pop().

Week 9 Object-Oriented Languages and Systems 5

Why would you want such a class, when Java already gives you that
and more?

What is the “simplest” way to get a pure Stack class? Override the
methods that you don’t want will null implementations. But this
violates the LSP.

Or you could create Stack class “from scratch.” What’s wrong with
doing this? Violates DRY

Another option is to create your own Stack class, but have it include
a java.util.Stack.

What is the name for the approach are we using here? Delegation

Here’s what this class might look like.

public class MyStack
{
 private java.util.Stack stack;
 public MyStack(){stack = new java.util.Stack();}
 public void push(Object o) { stack.push(o); }
 public Object pop() { return stack.pop(); }
 public object peek() { return stack.peek(); }
 public boolean isEmpty(){return stack.empty();}
}

Delegation is particularly useful where objects might need to “change
state”—think of a student becoming an employee. Both Student and
Employee can delegate to Person.

Exercise: Delegation in a sorted list

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 6

This exercise is an example of creating a sorted ArrayList of
Strings by delegating to Java’s ArrayList class. Every time an
element is added to the list, the sort method of Collections is
called.

This exercise asks you to fill in the blanks so that the list stays sorted.

Polymorphism

Unbounded vs. subtype polymorphism

In a statically typed o-o language like Java or C++, you can declare a
variable in a superclass, then assign a subclass object to that type:

public class Bicycle {
 protected int gear;
 public void setGear(int nextGear) {
 gear = nextGear;
 }
}
public class MountainBike extends Bicycle {
 protected int seatHeight;
 public void setHeight(int newSeatHeight) {
 seatHeight = newSeatHeight;
 }
}
public class BikeSim {
 public static void main() {
 ...
 Bicycle myBike = new MountainBike();
 ...
 myBike.setGear(3);
 myBike.setHeight(5);
 }
}

Which statement is illegal in the code above? Why?

In most dynamically typed o-o languages, including Ruby, that
statement would be legal. In Ruby, if a method is defined on an
object, the object can respond to the message.

Week 9 Object-Oriented Languages and Systems 7

It doesn’t matter what class the object is declared as … in fact, the
object isn’t declared!

This is called unbounded polymorphism—the polymorphism is not
limited by the declared class of the object.

In contrast, statically typed o-o languages usually have subtype
polymorphism—the compiler checks that the invoked method is
defined in the type that the object is declared as.

Unbounded polymorphism is related to duck typing, which was
discussed in the Week 3 online lectures [§2.4 of the textbook].

Dynamic method invocation

A call to an inherited method works just as if the inherited method had
been defined in the caller’s class.

But suppose the subclass (e.g., MySpiffyLabel) overrides a
method of the superclass (e.g., JLabel).

JLabel label = new MySpiffyLabel("A label");
label.paint(g); //for some Graphics object g

MySpiffyLabel
 inherits a paint method from JLabel, and
 implements its own version of paint.

Which of those two implementations of paint will be executed in the
second line of above example?

 The paint defined in JLabel?
 The paint defined in MySpiffyLabel?

Dynamic method invocation: To invoke a method on an object, the
JRE looks at the class of the receiving object to choose which version
to execute.

For example, when asked to execute label.paint(g), the Java
environment does not look in the declared class of label (namely,
JLabel).

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 8

Instead it chooses the paint method in the actual class of the object
referred to by label (namely, MySpiffyLabel).

When a method is called on an object of a subclass that overrides a
superclass method, the overriding version of the method is always
called.

Let us consider a rather tricky, but illustrative, example.

Abstract class Fruit has subclasses Apple, Orange, and Pear.

Since it is an abstract class, its name is shown in italics in the class
diagram.

 Note that Apple has a getStyle() method to return the kind of
apple (Delicious, McIntosh, etc.).

Because of subtype polymorphism, it is legal to declare a variable as
being of some class and then assign an object of a subclass to it:

Fruit fruit = new Apple("McIntosh");

Suppose that we have several fruits, and want to print out the colors
of each. This code will do the trick:

Fruit[] A = new Fruit[3];

Week 9 Object-Oriented Languages and Systems 9

A[0] = new Apple("Granny Smith");
A[1] = new Orange();
A[2] = new Pear();
for(int i = 0; i < A.length; i++) {
 if(A[i] instanceof Apple)
 System.out.println(
 ((Apple) A[i]).getColor());
 else if(A[i] instanceof Orange)
 System.out.println(
 ((Orange) A[i]).getColor());
 else if(A[i] instanceof Pear)
 System.out.println(((Pear)
A[i]).getColor());
 else
 System.out.println(A[i].getColor());

What’s wrong with this? If you add new classes, you have to modify
every such test to add to the options in the if statement.

How can we simplify it?

for (int i = 0; i < A.length; i++)
 System.out.println(A[i].getColor()); // or …

 for (Fruit a: A) System.out.println(a.getColor());

What would happen if no getColor method were defined in Fruit?
A compilation error; can’t compile a getColor call to a Fruit if no
getColor is declared for fruit.

Overloading vs. overriding

Two methods are overloaded if they are in the same class, but have
different parameter lists.

When a method is overridden, one of its subclasses declares a
method of the same name, with the same signature.

Consider this example. All of our Fruits inherit an equals method
from class Object. Suppose that Fruit declares its own equals
method:

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 10

Object>>public boolean equals(Object obj) (1)

Fruit>>public boolean equals(Fruit fruit) (2)

Has Fruit overridden the equals method? The parameter types
are different, so it can’t be overriding; it must be overloading.

Which equals method is called in each case below?

Object o = new Object();
Fruit f = new Fruit();
Object of = new Fruit();
f.equals(o);
f.equals(f);
f.equals(of);

What about these calls, using the same variables?

o.equals(o);
o.equals(f);
o.equals(of);
of.equals(o);
of.equals(f);
of.equals(of);

Now, let’s throw overriding into the picture and declare, in class
Fruit—

Object>>public boolean equals(Object obj) (1)
Fruit>>public boolean equals(Fruit fruit) (2)
Fruit>>public boolean equals(Object obj) (3)

Which methods are called now?

Object o = new Object();
Fruit f = new Fruit();
Object of = new Fruit();
f.equals(o);
f.equals(f);
f.equals(of);
o.equals(o);

Week 9 Object-Oriented Languages and Systems 11

o.equals(f);
o.equals(of);
of.equals(o);
of.equals(f);
of.equals(of);

In summary, the compiler decides which overloaded method to call by
looking at the declared type of

 the object being sent the message and
 the declared types of the arguments to the method call.

The particular version of the overloaded method is chosen at runtime
by dynamic method invocation using the actual type of the object
being sent the message.

The actual classes of the arguments to the method call do not play a
role.

This is very different from a language like CLOS, which uses the
actual types of the arguments to decide which method to execute.

Exercise: Singleton pattern

In the Week 5 video lecture, we saw the Singleton pattern defined in
Ruby.

require 'singleton'
class Registry
 include Singleton
 attr_accessor :val
end
r = Registry.new #throws a NoMethodError
r = Registry.instance
r.val = 5
s = Registry.instance
puts s.val >> 5
s.val = 6
puts r.val >> 6
s.dup >> TypeError: can’t duplicate instance of singleton Registry

The idea is to prevent more than one object of the class from being
defined, and to return the single instance by using a class method.

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 12

Here is an exercise with another Singleton pattern, except blanks are
left in the code. You need to fill in the blanks to get the code to run.

class Balance
 attr_reader __________(1)__________

 def __________(2)__________(balance)
 @balance = balance
 __________(3)__________ = nil
 end

 def __________(4)__________.instance
 @first_instance = __________(5)__________(100)

if @first_instance.nil?
 __________(6)__________
 end

 def withdraw(amount)
 @balance > amount ? (@balance ‐= amount) :

(puts 'Insufficient balance')
 end

 def deposit(amount)
 @balance += amount
 end
end

class FamilyMember
 def initialize(name)
 @name = name
 @balance = Balance.__________(7)__________
 end

 def withdraw(amount)
 __________(8)__________(amount)
 end

 def deposit(amount)
 __________(9)__________(amount)
 end

 def balance
 __________(10)__________
 end
end

Week 9 Object-Oriented Languages and Systems 13

Fill in the blanks in the Singleton class and the FamilyMember
class. Note that Singleton is not implemented as a mixin, though it
could be.

Exercise: Adapter Pattern

An adapter allows classes to work together that normally could not
because of incompatible interfaces.

 It “wraps” its own interface around the interface of a pre-existing
class. What does this mean?

 It may also translate data formats from the caller to a form
needed by the callee.

One can implement the Adapter Pattern using delegation in Ruby.
Consider the following contrived example.

 We want to put a SquarePeg into a RoundHole by passing it to
the hole's peg_fits? method.

 The peg_fits? method checks the radius attribute of the peg,
but a SquarePeg does not have a radius.

 Therefore we need to adapt the interface of the SquarePeg to
meet the requirements of the RoundHole.

class SquarePeg

 attr_reader :width

 def initialize(width)

 @width = width

 end

end

class RoundPeg

 attr_reader :radius

 def initialize(radius)

 @radius = radius

 end

end

class RoundHole
 attr_reader :radius

 def initialize(r)

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 14

 @radius = r
 end

 def peg_fits?(peg)
 peg.radius <= radius
 end
end

Here is the Adapter class:

class SquarePegAdapter
 def initialize(square_peg)
 @peg = square_peg
 end

 def radius
 Math.sqrt(((@peg.width/2) ** 2)*2)
 end
end

hole = RoundHole.new(4.0)
4.upto(7) do |i|
 peg = SquarePegAdapter.new(SquarePeg.new(i.to_f))
 if hole.peg_fits?(peg)
 puts "peg #{peg} fits in hole #{hole}"
 else
 puts "peg #{peg} does not fit in hole #{hole}"
 end
end

>>peg #<SquarePegAdapter:0xa038b10> fits in hole
#<RoundHole:0xa038bd0>
>>peg #<SquarePegAdapter:0xa038990> fits in hole
#<RoundHole:0xa038bd0>
>>peg #<SquarePegAdapter:0xa0388a0> does not fit in hole
#<RoundHole:0xa038bd0>
>>peg #<SquarePegAdapter:0xa038720> does not fit in hole
#<RoundHole:0xa038bd0>

Here is an exercise on the Adapter pattern. Fill in the blanks.

interface Bird
{
 // birds implement Bird interface that allows
 // them to fly and make sounds adaptee interface
 public void fly();

Week 9 Object-Oriented Languages and Systems 15

 public void ______(2)______();
}

class Sparrow implements ___(1)___

{

 // a concrete implementation of bird

 public void ____(4)___()

 {

 System.out.println("Flying");

 }

 public void makeSound()

 {

 System.out.println("Chirp Chirp");

 }

}

interface ToyDuck

{

 // target interface

 // toyducks dont fly they just make

 // squeaking sound

 public void squeak();

}

class PlasticToyDuck implements ToyDuck

{

 public void _____(3)____()

 {

 System.out.println("Squeak");

 }

}

class BirdAdapter implements ToyDuck

{

 // You need to implement the interface your

 // client expects to use.

 Bird bird;

 public BirdAdapter(Bird bird)

 {

 this.bird = bird;

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 16

 }

 public void squeak()

 {

 bird.______(5)_______();

 }

}

class Main

{

 public static void main(String args[])

 {

 Sparrow sparrow = new Sparrow();

 ToyDuck toyDuck = new PlasticToyDuck();

 // Wrap a bird in a birdAdapter so that it

 // behaves like toy duck

 ToyDuck birdAdapter = new BirdAdapter(sparrow);

 System.out.println("Sparrow...");

 sparrow.fly();

 sparrow.makeSound();

 System.out.println("ToyDuck...");

 toyDuck.squeak();

 // toy duck behaving like a bird

 System.out.println("BirdAdapter...");

 birdAdapter.squeak();

 }

}

