

Week 8 Object-Oriented Languages and Systems 1

Design Smells

“Uncle Bob” Martin, the architect of the
SOLID principles, identifies several “design
smells” that are symptomatic of “rotting
software.”

Outline for Week 8

I. Design smells

II. Single Responsibility

III. Open-Closed

IV. Liskov Substitution

V. Interface Segregation

VI. Dependency Inversion

Rigidity

The system is hard to change because every change forces changes
to other parts of the system.

You start to make what seems to be a simple change, but as you get
into it, you find that it impacts more code than you expected. And
when you fix the code in the other places, it affects still more
modules. What principle or guideline from past weeks does this
violate?

Fragility

A single change tends to “break” the program in many places.

Often those places have little apparent relation to the place where the
code is changed. Patching those modules may make the problem
worse later on.

Immobility

Parts of the code could be useful in other systems, but it is easier to
rewrite them than to extricate them and reuse them.

Viscosity

When changes need to be made, the design is hard to preserve.

It is easier to hack a change into the code than to make it in a way
that follows the principles of the design. Example: Instead of
subclassing a base class again, use case statements to add new
functionality.

CSC/ECE 517 Lecture Notes © 2024, Edward F. Gehringer 2

Needless complexity

The design includes elements that aren’t currently useful. Maybe the
designer expects them to be useful later on …

Needless repetition

What’s another name for this problem?

Opacity

A module is difficult to understand, not written in a clear and direct
manner.

Code tends to become more opaque as it ages, because no one is
intimately familiar with it any longer.

SOLID Principles

The SOLID principles are an acronym for five design principles that
are not patterns, but just rules to be followed when designing
programs.

The Single-Responsibility Principle

[SaaS §11.3] The Single-Responsibility Principle is

A class should have only one reason to change.

We have already seen this principle. Good cohesion dictates that,
“Every class should be responsible for doing one thing only and doing
it well.”

But what does “doing one thing only” mean? Martin says it means
that a class should have only one reason to change.

One bad example, that is common in student code, is a controller
class that does calculations related to the application’s business
logic.

Another of Martin’s examples is a Rectangle class that has two
responsibilities: calculate area and draw itself.

Week 8 Object-Oriented Languages and Systems 3

Two applications use Rectangles. Only one needs to draw the
rectangle.

In a static language, the GUI class would have to be included in both
applications. Changes to the draw()method would force the

computational-geometry application to be recompiled, even though it
doesn’t use the method.

A dynamic language doesn’t have these problems, but still

Now, it is possible to go overboard with this principle. Too many
classes are bad, too. The ideal number of methods for a class ≠ 1.

Martin clarifies what he means by a single reason for change: “Gather
together the things that change for the same reasons. Separate those
things that change for different reasons.”

Here’s an example of a CityMap class.

"Bad" Example

Main class: CityMap

In this example, the CityMap class represents a map consisting of a

list of cities with various attributes. Although this represents a single
logical object, the CityMap class takes on several very separate

pieces of functionality which should, according to this principle, be
divided into several classes. Those functionalities include managing
the list of cities (add and remove), drawing the map on the screen,
and calculating the total population.

"Good" Example

Computational
Geometry
Application

Graphical
Application

Rectangle

+ draw()
+ area(): double

GUI

CSC/ECE 517 Lecture Notes © 2024, Edward F. Gehringer 4

The good example simply splits the CityMap class into two classes,

Map and CityList. CityList maintains the ArrayList of cities

and also allows calculating the total population. The Map class
focuses solely on drawing the map on a screen. This fixes the issues
with the "bad" example, as each class now focuses solely on
operations related to one set of data.

First, say which components of the “bad” example should go into
each class in the “good” example.

Then, fill in the blanks in the Ruby or Java “good” example.

The Open-Closed Principle

The open-closed principle can be expressed as follows:

Software entities (classes, modules, functions, etc.) should be open
for extension, but closed for modification.

Why is it harder to add new functionality to a program when an
existing class needs to change?

Keeping the data of a class private helps assure that the class is
closed for modification.

Here is a bad and a good example of the Open-Closed principle.

Bad Example

Main class - ProgramRunner

In this example, ProgramRunner.java is responsible for running
programs from several programming languages. Two classes
(PythonProgram and RubyProgram) implement the Program

interface, which has a getCode() and a getType() method.

ProgramRunner has to figure out which type of program it has been

given in order to run it, and therefore has an ugly if statement
followed by a separate method to run every type of program.

In production, such a system would quickly grow unwieldy, as adding
any type of program requires adding to the if statement and adding

https://docs.google.com/forms/d/e/1FAIpQLSdkVlj2Wc6AbuMoalsPMKG5USs7rq3T64V-RGJafEnWya8NJw/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScaMLaQMn-7Ew8ncctesx2zK85WncrqyvHC5UxXWmPLlh3e0Q/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfzq6ICfYrOS4p4UgJl6CQ4Sm2sG2S0-Apbon6fj5Ol43_4MQ/viewform

Week 8 Object-Oriented Languages and Systems 5

new methods to the ProgramRunner, breaking the Open/Closed

Principle.

Good Example

The Good example corrects the above issues by simply adding a
runProgram" method to the Program interface.

This renders the entire ProgramRunner class obsolete, and allows

each class to handle its own execution, rather than being tightly
coupled to a ProgramRunner class.

As a result of this change, new Program types can be added without
needing to also update the ProgramRunner class.

Fill in the rest of the code for the good example in Java (or in Ruby).

If classes are not to change, then you need to be careful to design
them so they don’t need to. This suggests …

The Liskov Substitution Principle

[SaaS §11.5] A short statement of the Liskov Substitution Principle is,

Subtypes must be substitutable for their base types.

If they are not, you have to be careful in writing code that uses the
base type. One example from StackExchange:

Suppose you have a class Task and a subclass ProjectTask.

Task has a close() method that doesn’t work for ProjectTask.

Here is some code that uses close().

public void processTaskAndClose(Task taskToProcess)

{

 taskToProcess.execute();

 taskToProcess.dateProcessed = DateTime.now;

 taskToProcess.close();

}

You can’t be sure this code will work if a ProjectTask is passed

to processTaskAndClose. So you need to put some kind of if

statement or case statement around the call to close().

https://docs.google.com/forms/d/e/1FAIpQLScBjTT9cKkZENo_iXYoORFwjr7K-oGa4pnLedZPP1RhUE7DIw/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeaelBs16W0G2YVuOjfk516vTOux0K6FtQLSCiXCvLhpNgNBA/viewform?usp=sf_link
https://softwareengineering.stackexchange.com/questions/170222/what-can-go-wrong-if-the-liskov-substitution-principle-is-violated

CSC/ECE 517 Lecture Notes © 2024, Edward F. Gehringer 6

Here’s an exercise involving the LSP.

"Bad" Example

In this example, a Computer object keeps track of its amount of

RAM and its OS version. It also has methods for upgrading the RAM
and updating the OS. Two classes, a DesktopComputer and a

Phone, extend this class and implement its methods.

A ComputerUpgrader object claims to be able to upgrade any

Computer (that is, add more RAM and update the OS), but it really

can't add more RAM to a phone, so it must check to make sure the
Computer object it has been given isn't a Phone.

This violates the LSP, as a Phone cannot fully be substituted for a

Computer.

"Good" Example

The most straightforward method of solving the above problems is to
add a new interface HardwareUpgradable, which is only

implemented by Computers which can have their hardware

upgraded (DesktopComputer can, Phone cannot).

Next, by splitting the upgrade method in ComputerUpgrader into

upgradeRAM (which accepts HardwareUpgradable) and

upgradeOS (which accepts any computer), the issue can be

resolved. No type-checking is necessary.

Fill in the blanks to finish this example in Java (or in Ruby).

The Interface-Segregation Principle

The Single-Responsibility Principle tells us that classes that are too
big are no good. The Interface-Segregation Principle says the same
thing about interfaces. It is,

Clients should not be forced to depend on methods that they do
not use.

If you know Java, you are probably familiar with the MouseListener

and MouseMotionListener interfaces. Both of them handle

MouseEvents. Why are two listeners needed for MouseEvents,

when all other kinds of events have only one listener interface?

https://docs.google.com/forms/d/e/1FAIpQLSc5b7TZesSsY8mXTd7jPYeH6rrGjBjXJxp1XDo9ovnGyx-ohQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeY6AvF9F8nv-zhflZBhCQePMlNB0m5EdlY_quCSr1YKUyMBw/viewform?usp=sf_link

Week 8 Object-Oriented Languages and Systems 7

This video describes the issue of read streams vs. read-and-write
streams.

OK, you might say, this makes sense for Java, but how about Ruby?
Ruby doesn’t even have interfaces!

Indeed, dynamically typed languages don’t need interfaces. Why?

The issue, then, is how to give a Ruby class access to the methods it
needs from another class, rather than giving it access to all the
methods, which it would get if it inherited from the class.

The forwardable mixin has a def_delegator method that allows one
Ruby class to use some, but not all, of the methods of the class it
delegates to. This video shows how forwardable can be used to
create a Moderator class that can edit posts, but not create or delete
them.

Here is an exercise involving the ISP.

"Bad" Example

In this example, a single interface, Game is created, for two classes,

SingleplayerGame and MultiplayerGame.

This is on the surface a logical structure. However, in this case, the
methods getServerList and pauseGame, published in the Game

interface, are not used by both clients (as a MultiplayerGame

cannot be paused, and a SingleplayerGame does not have

servers).

Because of this mismatch, the SingleplayerGame is forced to

throw an UnsupportedOperationException when

getServerList is called on it, and MultiplayerGame is forced to

throw an UnsupportedOperationException when pauseGame

is called on it.

https://www.youtube.com/watch?v=dmKvJyihsAQ
https://ruby-doc.org/stdlib-2.5.1/libdoc/forwardable/rdoc/Forwardable.html
https://www.youtube.com/watch?v=Ye1h3zKl1lg

CSC/ECE 517 Lecture Notes © 2024, Edward F. Gehringer 8

This demonstrates a violation of the Interface Segregation principle,
as a single, logical but ill-fitting interface is used by several clients,
despite clear incompatibilities.

"Good" Example

This example is derived from the “bad" example. In this case, the
single interface Game was split into three interfaces with a single

method each: BasicGame, OnlineGame, and PausableGame.

With this split, MultiplayerGame can implement BasicGame and

OnlineGame, but it does not need to implement PausableGame (as

it is not pausable), and SingleplayerGame can implement

BasicGame and PausableGame (as it can be paused but is not

online). This corrects the need to throw
UnsupportedOperationExceptions, and follows the ISP by

dividing one general purpose interface into several smaller interfaces.

Fill in the blanks in the “good” Java code (or Ruby code).

The Dependency-Inversion principle

[SaaS §11.6] We have just seen an instance where code depends on
abstractions to decide what kind of object is to be created. Now here
is another situation where code is clearer if it depends on
abstractions.

Any object that uses another object to carry out its work is said to
depend on the other object. A very common layered architecture has
higher-level modules depending on lower-level modules, like this.

However, the Dependency-Inversion Principle says this is not good.
It says,

• High-level modules should not depend on low-level modules.
Both should depend on abstractions.

• Abstractions should not depend on details. Details should
depend on abstractions.

https://docs.google.com/forms/d/e/1FAIpQLScax9hxT8tHrcdCvIipLT4LKjAWFTd0JgWFHRSstnwZuiJ-8Q/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSdLX-7CnQgHMqxAyqJdDjxDrFVEn_IfyCLz7y6FWKdNISa2XA/viewform?usp=sf_link

Week 8 Object-Oriented Languages and Systems 9

The reason that it’s bad for high-level modules to depend on low-
level modules is that a change to a low-level module can require a
change to a high-level module.

This makes it hard to contain the damage when editing low-level
modules.

The reason that this is called an “inversion” principle is that it goes
against the advice of other software-development methodologies,
such as Structured Analysis and Design.

Interposing interfaces between the various levels allows either level
to change without affecting the other, assuming that the same
interface is still implemented.

The second part of the principle says, essentially, that high-level
modules should not get involved in performing low-level functions.

This video explains that

• the Coca Cola CEO should not deliver products to 7/11, and

• the Ruby ActiveRecord class should not say how an
application’s users table is to be structured.

Just as with the Single-Responsibility and Interface-Segregation
Principles, it is possible to go overboard with Dependency Inversion.

https://www.youtube.com/watch?v=qL2-5g_lJTs

CSC/ECE 517 Lecture Notes © 2024, Edward F. Gehringer 10

The system should not be filled with single-method classes and
interfaces, nor should there be an interface between every two
classes.

Interfaces should be reserved for the boundaries between layers, or
collections of classes that are otherwise cohesive.

Here is an exercise involving the Dependency-Inversion Principle.

"Bad" Example

Main Class: Bank

In this example, a Bank class is a high-level class with complex

functionality (redacted for this example). One piece of that
functionality is handling transactions between various accounts
(simple, low-level classes).

The Bank, however, is very tightly coupled with the

CheckingAccount and SavingsAccount classes. Adding

additional account types (such as a MoneyMarketAccount,

InvestmentAccount, or RetirementAccount) would

exponentially increase the complexity of Bank.

"Good" Example

Main Class: Bank (high level) / Accounts (low level)

To correct the above issues, a layer of abstraction between the
various types of accounts and the high-level Bank class is added. In

this case, a simple BasicAccount interface is added between the

layers.

Although each account may process transactions in different ways
(for example, Federal Reserve Regulation D requires that savings
accounts limit the number of transactions per month, but this does not
apply to Checking accounts), a simple, uniform interface can be
provided. This dramatically simplifies the Bank class, and will allow

for new types of accounts to be added easily.

An argument could be made to make BasicAccount an abstract

class. In this limited example, this would actually simplify the
codebase, by allowing the repeated code found in various versions of

Week 8 Object-Oriented Languages and Systems 11

deposit() and withdraw() to be moved to a single location. In

that setup, classes which require checks/validation before accepting
a deposit or withdraw could make those and then delegate to the
abstract class.

However, in a more complete system, there may very well be
scenarios where this structure would not work (for example,
HSA/IRA/Business/Credit accounts may have very different deposit
or withdrawal structures). Therefore, the class is left as an interface,
as that structure makes the example clearer (it is essential to clarify
the interface as existing primarily as a layer between Bank and the

Account classes).

Fill in the blanks to complete the code.

Now, to test your knowledge of the SOLID Principles, take this quiz.

https://docs.google.com/forms/d/e/1FAIpQLSfhRqAT_ZdAsXoAXVUO2YB98dHwDBqWUAogSRsKOcqwZ8LHKg/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfGcCNopNiV5dYiAZs36C7sDTgYmiVoS4nN1hzYaY_ql6cwGA/viewform?usp=sf_link

