
Week 3 Object-Oriented Languages and Systems 1

Ruby on Rails
Ruby on Rails is a Web application framework for Ruby. It was first

released to the public in July 2004.

Within months, it was a widely used development environment. Many

multinational corporations are using it to create Web applications.

It is the standard Web-development framework for Ruby.

Model/View/Controller

All Rails applications are implemented using the Model/View/Controller

(MVC) architecture.

Models are objects that represent the components of an application that
perform information processing in the problem domain.

Models should represent “real world” entities:

• physical entities like a valve in a control system, or

• conceptual entities like a department in an office, or a contract
between two businesses.

Views are objects that display some aspect of the model. They are the
output mechanism for the models.

You could have a view that represents:

• the position of the valve or the temperature of a chemical vat
(graphical)

• cells in a spreadsheet (tabular)

• the terms and conditions of a contract (textual)

• product installation instructions (video or audio)

Controllers are objects that control how user actions are interpreted. They
are the input mechanism for the views and models.

For example, the interpretation of a double-click on a temperature gauge
would be handled by the controller notifying the model in a way it agrees to
respond to.

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 2

MVCs come in a triad, with communication between the components

occurring as follows:

Whenever the state of a model changes, the view needs to display itself
differently.

For instance, consider a View that represents a car’s engine temperature.

If the engine temperature goes up (say, because a fan belt breaks) the
gauge showing the temperature will need to redisplay its new value in
response to that change.

In Rails, when a project is created, it is given folders for model, view, and
controller classes.

A Rails application accepts an incoming request from a Web page, then
gives it to a router. The router parses the URL and eventually directs the
request to a particular controller.

For example, the URL might be something like
http://expertiza.ncsu.edu/users/show/108.

This means to show the various fields in the entry for User 108 (name, e-
mail address, role). In this case,

• the controller is users,

• the action is show, and

• the ID of the user is 108.

Week 3 Object-Oriented Languages and Systems 3

Or, we might have something like
http://www.etailer.com/store/add_to_cart/353.

What do you think this would represent?

The Rails Cookbook Application
After we start the server, we see this series of messages:

When we visit the application in our browser, we see this initial screen:

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 4

Let’s create a category:

And a couple of beverages …

Week 3 Object-Oriented Languages and Systems 5

Now let’s go and look at what’s in the database:

• Go to View → Tool Windows → Database.

• Make sure that Development: Cookbook is added as a data source

(see the RubyMine setup instructions for how to do this).

• Double-clicking on a table will show the records in that table.

Notice the created_at and updated_at fields. These are automatically

updated with the timestamp of the time that a row was created or updated.

https://docs.google.com/document/d/1DuPihi6PJdqcCu5WwF-ZDJQr4LmM56lt5F8lfFiPhzQ/edit#heading=h.g3d5d4ix5b3m

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 6

Also notice the category_id. What do you think this is

The controllers
Let’s take a look at the code for categories_controller.rb.

class CategoriesController < ApplicationController

 # GET /categories

 # GET /categories.json

Note that it consists of set of actions, with

each method implementing one of the

actions.

 def index

 @categories = Category.all

 respond_to do |format|

 format.html # index.html.erb

 format.json { render json: @categories }

 end

 end

The statement inside the method does a database lookup of all categories,

and assigns the resulting array to the @categories instance variable.

Without web-service support, that would be the whole method. The code

that follows determines whether to respond with HTML (as when we are

interacting with a user) or JSON (if we are returning an object).

What that says is, "if the client wants HTML, just send back the categories

in HTML, but if the client wants JSON, return the list of categories in JSON

format.” The response format is determined by HTTP Accept header sent

by the client.

Immediately after executing a method, e.g., index, the controller will

render a template of the same name. This template is in the corresponding

directory in the views folder. In this case, the template is

views/categories/index.html.erb. In a few minutes, we will talk

about .erb files.

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSON

Week 3 Object-Oriented Languages and Systems 7

There is very little difference between the index method and the show

method.

 # GET /categories/1

 # GET /categories/1.json

 def show

 @category = Category.find(params[:id])

 respond_to do |format|

 format.html # show.html.erb

 format.json { render json: @category }

 end

 end

The show method

looks for a category

with a particular key.

Its output is very

basic (above). The

formatting is different

(the text “Listing

categories” doesn’t

appear, etc.) because

the corresponding

views are different

(as we will see).

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 8

Look again at the difference between the assignment statements involving

categories.

• index has @categories = Category.all

• show has @category = Category.find(params[:id])

Both of these methods do retrievals from the categories table in the db.

• The all method retrieves all records from the categories table

and assigns the collection to a variable called @categories.

• The find(...) method retrieves a particular record, the record with

the specified id.

This is the first use we have seen of Active Record.

Now, as an exercise, see if you can arrange this set of statements to form
the index method of recipes_controller.rb.

Active Record

Our Ruby on Rails programs deal with objects, but they are mapped into

relational databases.

There’s a mismatch here—how are the database tables translated into

objects, and how are objects created in the program saved to the db?

Ruby on Rails’ solution is Active Record. In Active Record,

• Database tables correspond to Rails (model) classes.

• Database records (rows) correspond to Rails objects.

We can perform operations on tables by invoking class methods, as is

done in both the RecipesController and the CategoriesController:

@recipes = Recipe.all

@categories = Category.all

https://docs.google.com/forms/d/e/1FAIpQLSe-d_9o8z-SC-vSxtzM6y7sXf7rOOUmZrFTxIL8IT-eA8Hiog/viewform?usp=sf_link

Week 3 Object-Oriented Languages and Systems 9

Let’s take a closer look at the find in the show method:

Category.find(params[:id])

This illustrates two common features of Active Record calls.

• params is an object (a hash) that holds all of the parameters passed

in a browser request.

• params[:id] holds the id, or primary key, of the object.

When you click a link for a specific category, the id of that category is
passed in the params object, so that show can display that category.

Now, if you are running the application on your computer, you can test what
happens if you delete a category that contains a recipe.

Method pairs

Next we have the new and create methods. Sounds like they might do

the same thing …

What’s the difference between the two? Well, which one is called first?

The method prepares the form for display; the method

processes the data that was entered and attempts to save it to the db.

 # GET /categories/new

 def new

 @category = Category.new

 respond_to do |format|

 format.html # new.html.erb

 format.json { render json: @category }

 end

 # POST /categories

 # POST /categories.json

 def create

 @category = Category.new(category_params)

 respond_to do |format|

 if @category.save

 format.html { redirect_to @category, notice: 'Category was successfully created.' }

 format.json { render json: @category, status: :created, :location: @category }

 else

https://docs.google.com/forms/d/e/1FAIpQLScvzXSQuMIwBn1qvAE87fC5xi3EcbRVnr0QPQIQP7pacC8dRg/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScvzXSQuMIwBn1qvAE87fC5xi3EcbRVnr0QPQIQP7pacC8dRg/viewform?usp=sf_link

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 10

 format.html { render action: "new" }

 format.json { render json: @category.errors, :status: :unprocessable_entity }

 end

 end

 end

There is a similar distinction between edit and update. Edit retrieves a

table entry and displays it in a window.

When the changes are submitted, update

is invoked.

 # GET /categories/1/edit

 def edit

 @category = Category.find(params[:id])

 end

 # PUT /categories/1

 # PUT /categories/1.xml

 def update

 respond_to do |format|

 if @category.update_attributes(category_params)

 format.html { redirect_to @category, notice: 'Category was

successfully updated.' }

 format.json { head :no_content }

 else

 format.html { render action: 'edit' }

 format.xml { render json: @category.errors, status:

:unprocessable_entity }

 end

 end

 end

 # DELETE /categories/1

 # DELETE /categories/1.xml

 def destroy

 @category.destroy

 respond_to do |format|

 format.html { redirect_to categories_url }

 format.xml { head :no_content }

 end

 end

The categories_controller is extremely similar to the recipes_controller.

Let’s take a look …

new

create

edit

update

Week 3 Object-Oriented Languages and Systems 11

These controllers were generated by the Rails scaffold mechanism. We

can use the scaffold to create a recipes table, with title, description, and

instructions fields.

We can then proceed to exercise the application as we did before. But now

we can change its functionality too.

Let’s make a trivial change: Change “Show all recipes” and “Show all

categories” to “List all recipes and “List all categories”.

Where shall we make this change?

Well, if we click on “Show all categories”, we get this screen.

What do you notice about the bottom line?

And if we click on “Create new recipe”, we get this screen:

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 12

Again, the bottom line is the same. Let’s take a look at the directory listing.

Which file do you think contains that code?

This is an .html.erb file, the first time we’ve seen this type. What do you

think it stands for?

Let’s look at the code in this file.

<!DOCTYPE html>

<html>

<head>

 <title>Online Cookbook</title>

 <%= stylesheet_link_tag "application", :media => "all" %>

 <%= javascript_include_tag "application" %>

Week 3 Object-Oriented Languages and Systems 13

 <%= csrf_meta_tags %>

</head>

<body>

<h1>Online Cookbook</h1>

<%= yield %>

<%= link_to "Show all recipes", recipes_url %> <%= link_to "Show all

categories", categories_url %>

</body>

</html>

This raises several questions.

• What gets invoked when we click on the “Show all recipes” link?

• What is the <%= yield %> for?

• What do “recipes_url”, “categories_url”, etc., mean?

Some actions, like deleting an object, are dangerous. Our app should—

and does—guard against performing them by accident. What code could

we add to do the same when updating a recipe?

Now, here are some review questions.

1. What URL do we type in to find the homepage of our cookbook

application?

2. When we click on “Show all categories”, what URL will be taken to?

https://docs.google.com/forms/d/e/1FAIpQLSem7oA7oIyqjzY6y2w4T8QczVg_D99Q_MqLjCqF5-in65BxzQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfdS9JfJC1vYI23KdcwH07_isI_OpfJEYvA2ngx8w9anv2c_w/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfWDwvXECrtNIt4gI5stVsHF1LCffJ25bXYsVxlRVjy0pk90g/viewform?usp=sf_link

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 14

Routes

Routes are a way to take incoming requests from the web and redirect

them to specific controllers and actions (actions == methods).

In the routes.rb file, you just declare

resources :categories

and this generates routes for each of the methods for the

categories_controller.

In the table below, the path is the tail of the URL that is visited.

When that path is visited, a particular controller is invoked. The action is

the method of the controller that will be called.

HTTP Verb Path Controller#Action Used for

GET /categories categories#index display a list of all categories

GET /categories/new categories#new
return an HTML form for creating a new
category

POST /categories categories#create create a new category

GET /categories/:id categories#show display a specific category

GET /categories/:id/edit categories#edit
return an HTML form for editing a
category

PATCH/PUT /categories/:id categories#update update a specific category

DELETE /categories/:id categories#destroy delete a specific category

Some paths specify an id, which is the object (or database record) that is

being acted upon.

Also, creating routes creates “helpers” …

https://guides.rubyonrails.org/routing.html
https://www.testingexcellence.com/difference-put-patch-requests/

Week 3 Object-Oriented Languages and Systems 15

Variable Value Example

categories_path /categories

new_category_path /categories/new

edit_category_path(:id) /categories/:id/edit edit_category_path(10) → /categories/10/edit

category_path(:id) /categories/:id category_path(10) → /categories/10

For each _path variable, there is a corresponding _url variable that

contains the whole path, e.g., http://localhost:3000/categories/new

Test your knowledge of routes with this exercise.

The models
There are only two files in the model, one each for the tables in the

application.

Let’s take a look at them.

category.rb

class Category < ActiveRecord::Base

 has_many :recipes

 validates :name, :presence => true

end

recipe.rb

class Recipe < ActiveRecord::Base

 belongs_to :category

 validates :title, :presence => true

 validates :description, :presence => true

 validates :instructions, :presence => true

 validates :category, :presence => true

end

Many validations can be applied to fields of a model object. This Rails

Guide describes them. Use it to answer these questions about validations

that could be added to our Cookbook app.

The validates of Rails 3 can be replaced with a strong-parameter

mechanism, starting with Rails 4.

https://docs.google.com/forms/d/e/1FAIpQLSftlQZhO-MwHnrD4kuDZod8xLjSuN1zZUPc-eQfAMV1RepkZw/viewform?usp=sf_link
https://guides.rubyonrails.org/active_record_validations.html
https://guides.rubyonrails.org/active_record_validations.html
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScw0NrCz8VhptOypKdfoqpavuOZpuAAvK0z5N-wLlj0sj5kNQ/viewform
http://edgeguides.rubyonrails.org/action_controller_overview.html#strong-parameters

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 16

This prevents mass assignment, which is a security hole.

Active Record associations

A relationship between two objects may be

• one-to-one (e.g., a course has a syllabus and a syllabus belongs to

one course).

o class Syllabus < ActiveRecord::Base

 belongs_to :course

 # …

end

o class Course < ActiveRecord::Base

 has_one :syllabus

 # …

end

• one-to-many (e.g., a course has many assignments)

o class Assignment < ActiveRecord::Base

 belongs_to :course

 # …

end

o class Course < ActiveRecord::Base

 has_many :assignments

 # …

end

• many-to-many (e.g., a course has many students; students have

many courses)

o class Student < ActiveRecord::Base

 has_and_belongs_to_many :courses

https://guides.rubyonrails.org/v3.2.9/security.html#mass-assignment

Week 3 Object-Oriented Languages and Systems 17

 # …

end

o class Course < ActiveRecord::Base

 has_and_belongs_to_many :students

 # …

end

Rails calls these relationships associations.

You should be able to answer the following questions about these files.

1. What kind of relationship is there between recipes and categories?

2. Where is this relationship represented?

Earlier, we saw that deleting a category before deleting its recipes caused

an error. Now, by reading Section 1 of Active Record Associations, you

should be able to determine how to fix this problem.

Now, you can probably see how models, views, and controllers fit together.

The views
Now, let’s take a look at the View code for the categories. We’ll look at it

line by line, which may obscure the flow, but if you have trouble, just look in

your Cookbook folder for the uncommented code.

edit.html.erb

<h1>Editing category</h1>

<%= render 'form' %>

<%= link_to 'Show', @category %> |

<%= link_to 'Back', categories_path %>

The form refers to a partial named _form.html.erb.

https://guides.rubyonrails.org/association_basics.html
https://docs.google.com/forms/d/e/1FAIpQLSdS-CaLNEQ0BtWK6KaLEk-xN3nLHWh8CqYwuapXNGcKtfMmIw/viewform?usp=sf_link
https://guides.rubyonrails.org/association_basics.html
https://docs.google.com/forms/d/e/1FAIpQLScVo_ceG_Vu96KKRzX_QYKxnv4OTY78ZTUJKW96Dm1EiGf_iQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSelL6YAjyk1tc9rwfMl2ZGq2-h7p1YsEWjhnVo7bmNXiBbxvw/viewform?usp=sf_link
http://guides.rubyonrails.org/layouts_and_rendering.html#using-partials

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 18

_form.html.erb

<%= form_for(@category) do |f| %>

 <% if @category.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(@category.errors.count, "error") %>

prohibited this category from being saved:</h2>

 <% @category.errors.full_messages.each do |msg| %>

 <%= msg %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= f.label :name %>

 <%= f.text_field :name %>

 </div>

 <div class="actions">

 <%= f.submit %>

 </div>

<% end %>

Compare this with _form.html.erb for recipes:

<%= form_for(@recipe) do |f| %>

 <% if @recipe.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(@recipe.errors.count, "error") %> prohibited

this recipe from being saved:</h2>

 <% @recipe.errors.full_messages.each do |msg| %>

 <%= msg %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= f.label :title %>

 <%= f.text_field :title %>

 </div>

 <div class="field">

Week 3 Object-Oriented Languages and Systems 19

 <%= f.label :description %>

 <%= f.text_field :description %>

 </div>

 <div class="field">

 <%= f.label :category %>

 <%= select("recipe", "category_id", Category.all.collect{ |c| [

c.name, c.id] }) %>

 </div>

 <div class="field">

 <%= f.label :instructions %>

 <%= f.text_area :instructions %>

 </div>

 <div class="actions">

 <%= f.submit %>

 </div>

<% end %>

Explain the differences.

show.html.erb

This file has very basic functionality.

<p id="notice"><%= notice %></p>

<p>

 Name:

 <%= @category.name %>

</p>

<%= link_to 'Edit', edit_category_path(@category) %> |

<%= link_to 'Back', categories_path %>

Compare with show.html.erb for recipes.

<p id="notice"><%= notice %></p>

<p>

 Title:

 <%= @recipe.title %>

</p>

<p>

 Description:

 <%= @recipe.description %>

</p>

<p>

 Instructions:

CSC/ECE 517 Lecture Notes © 2024 Edward F. Gehringer 20

 <%= @recipe.instructions %>

</p>

<%= link_to 'Edit', edit_recipe_path(@recipe) %> |

<%= link_to 'Back', recipes_path %>

new.html.erb

The only remaining view is new.html.erb. It doesn’t illustrate much that we

haven’t seen before, so I’ll ask you the questions (below).

<h1>New category</h1>

<%= render 'form' %>

<%= link_to 'Back', categories_path %>

1. Which controller is invoked when the form is submitted? Where is the

code for this controller?

2. What says to print out a blank for the name of the category?

https://docs.google.com/forms/d/e/1FAIpQLSfURfyVqZQuUhktV0cywdgPdojC7z7jjvZ4BHOPS6uSPANtcw/viewform?usp=sf_link

