

Lecture 8 Architecture of Parallel Computers 1

Assignment

How can we statically assign elements to processes?

• One option is “block
assignment”—Row i is

assigned to process i / p.

p
0

p
1

p
2

p
3

• Another option is “cyclic assignment—Process i is assigned
rows i, i+p, i+2p, etc.

• Another option is 2D contiguous block partitioning.

We could instead use dynamic assignment, where a process gets an
index, works on the row, then gets a new index, etc. Is there any
advantage to this?

What are advantages and disadvantages of these partitionings?

Static assignment of rows to processes reduces concurrency

But block assignment reduces communication, by assigning adjacent
rows to the same processor.

How many rows now need to be accessed from other processors?

So the communication-to-computation ratio is now only O().

Orchestration

Once we move on to the orchestration phase, the computation model
constrains our decisions.

https://docs.google.com/forms/d/e/1FAIpQLSfVtjcCndl0QfEHMkGxus4_Ik_u5gagA_tv2S1hj-WwXt_7aA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScW8Sitg7Z2uxOHhcnBtf7EljbsZ0KalR4YCkqpod1YxoxbUw/viewform?usp=sf_link

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025 2

Data-parallel model

In the code below, we assume that global declarations are used for
shared data, and that any data declared within a procedure is private.

Global data is allocated with g_malloc.

Differences from sequential program:

• for_all loops
• decomp statement
• mydiff variable, private to each process
• reduce statement

1. int n, nprocs ; /*grid size (n+2n+2) and # of processes*/
2. double **A, diff = 0;

3. main()
4. begin
5. read(n); read(nprocs); ; /*read input grid size and # of processes*/
6. A G_MALLOC (a 2-d array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve(A) /*solve the equation system*/
11. double **A; /* A is an (n+2n+2) array*/
12. begin
13. int i, j, done = 0;
14. float mydiff = 0, temp;
14a. DECOMP A[BLOCK,*, nprocs];
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize maximum difference to 0 */
17. for_all i 1 to n do /*sweep over non-border points of grid*/
18. for_all j 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /* compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
24a. REDUCE (mydiff, diff, ADD);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while

Lecture 8 Architecture of Parallel Computers 3

The decomp statement has a twofold purpose.

• It specifies the assignment of iterations to processes.

 The first dimension (rows) is partitioned into nprocs contiguous
blocks. The second dimension is not partitioned at all.

 Specifying [CYCLIC, *, nprocs] would have caused a

cyclic partitioning of rows among nprocs processes.

 Specifying [*,CYCLIC, nprocs] would have caused a

cyclic partitioning of columns among nprocs processes.

 Specifying [BLOCK, BLOCK, nprocs] would have implied a

2D contiguous block partitioning.

 For all of these partitionings, if the grid is 1024 1024, tell
which processing element in a 64-PE system would compute
A[33, 65].

• It specifies the assignment of grid data to memories on a dis-
tributed-memory machine. (Follows the owner-computes rule.)

The mydiff variable allows local sums to be computed.

The reduce statement tells the system to add together all the mydiff
variables into the shared diff variable.

https://docs.google.com/forms/d/e/1FAIpQLSci4bPa59wzzyT2nUg5dIcLEqOeJaxjz5-0cBQ53WO1mMNKMA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSci4bPa59wzzyT2nUg5dIcLEqOeJaxjz5-0cBQ53WO1mMNKMA/viewform?usp=sf_link

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025 4

Shared-memory model

In this model, we
need mechanisms to
create processes and
manage them.

After we create the
processes, they
interact as shown on
the right.

Sweep

Test Convergence

Processes

Solve Solve Solve Solve

Lecture 8 Architecture of Parallel Computers 5

What are the main differences between the serial program and this
program?

• The first process creates nprocs–1 worker processes. All n
processes execute Solve.

 All processes execute the same code.

 But all do not execute the same instructions at the same time.

• Private variables like mymin and mymax are used to control
loop bounds.

• All processors need to—

1. int n, nprocs;
 /*matrix dimension and number of processors to be used*/

2a. double**A, diff; /*A is global (shared) array representing the grid*/
/*diff is global (shared) maximum difference in current
sweep*
/ 2b. LOCKDE C(diff_lock); /*declaration of lock to enforce mutual exclusion*/

2c. BARDEC (bar1); /*barrier declaration for global synchronization between
sweeps*
/

3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes */
6. A

 - (a two-dimensional array of size n+2 by n+2 doubles);
7. initialize(A);

 /*initialize A in an unspecified way*/
8a. CREATE (nprocs–1, Solve, A);
8. Solve(A); /*main process becomes a worker

too*/ 8b. WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve(A)
11. double**A; /*A is entire n+2-by-n+2 shared array,

as in the sequential program*/
12. begin
13. int i,j, pid , done = 0;
14. float temp, mydiff = 0;

 /*private variables*/
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/

15. while (!done) do /* outer loop over all diagonal elements*/
16. mydiff

 = diff = 0 ;
/*set global diff to 0 (okay for all to do it)*/

16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/
17. for i

 mymin to mymax do /*for each of my rows */
18. for j 1 to n do /*for all nonborder elements in that row*/
19. temp = A[i,j];
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. mydiff += abs(A[i,j] - temp);
23. endfor
24. e ndfor
25a. LOCK(diff_lock); /*update global diff if necessary*/
25b. diff += mydiff ;
25c. UNLOCK(diff_lock);
25d. BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/
25e. if (diff/(n*n) < TOL) then done = 1;

 /*check convergence; all get
same answer*/

25f. BARRIER(bar1, nprocs);
26. endwhile
27. end procedure

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025 6

° complete an iteration before any process tests for

convergence. Why?

° test for convergence before any process starts the next

iteration. Why?

 Notice the use of barrier synchronization to achieve this.

 What could happen if the barrier at Line 16a was removed?

 What could happen if the barrier at Line 25d was removed?

 What could happen if the barrier at Line 25f was removed?

• Locks must be plsaced around updates to diff, so that no two
processors update it at once. Otherwise, inconsistent results
could ensue.

 p1 p2

 r1 diff { p1 gets 0 in its r1}

 r1 diff { p2 also gets 0}

 r1 r1+r2 { p1 sets its r1 to 1}

 r1 r1+r2 { p2 sets its r1 to 1}

 diff r1 { p1 sets diff to 1}

 diff r1 { p2 also sets diff to 1}

If we allow only one processor at a time to access diff, we can avoid
this race condition.

What is one performance problem with using locks?

Note that at least some processors need to access diff as a non-local
variable.

What is one technique that our shared-memory program uses to
diminish this problem of serialization?

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfvWxIk61TOy3ZRdJvcCaurxw-a0h6tQmoLF0n9HTNHhX-W3g/viewform
https://docs.google.com/forms/d/e/1FAIpQLScc1DfVqU7UHT1FS_DFFX9SEbYZXdLmaHsxPpvN59lSpYBsOQ/viewform?usp=sf_link

Lecture 8 Architecture of Parallel Computers 7

Message-passing model

The program for the message-passing model is also similar, but
again there are several differences.

• There’s no shared address space, so we can’t declare array A
to be shared.

 Instead, each processor holds the rows of A that it is working
on.

• The subarrays are of size (n/nprocs + 2) (n + 2).
 This allows each subarray to have a copy of the boundary rows

from neighboring processors. Why is this done?

 These ghost rows must be copied explicitly, via send and
receive operations.

 Note that send is not synchronous; that is, it doesn’t make the
process wait until a corresponding receive has been executed.

 What problem would occur if it did?

• Since the rows are copied and then not updated by the
processors they have been copied from, the boundary values
are more out-of-date than they are in the sequential version of
the program.

 This may or may not cause more sweeps to be needed for
convergence.

• The indexes used to reference variables are local indexes, not
the “real” indexes that would be used if array A were a single
shared array.

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScYp_d-GQI3mqWbRc1BBxy6_OcPUmh3IHGyhiD9abYLCrEEwg/viewform

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025 8

There are one or more typos in the if statements involving pids.

Which statement(s)? What are the error(s)?

1. int pid, n, b; /*process id, matrix dimension and number of

 processors to be used*/
2. float **myA;

3. main()

4. begin

5. read(n); read(nprocs); /*read input matrix size and number of processes*/
8a. CREATE (nprocs-1, Solve);

8b. Solve(); /*main process becomes a worker too*/

8c. WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve()

11. begin
13. int i,j, pid, n’ = n/nprocs, done = 0;

14. float temp, tempdiff, mydiff = 0; /*private variables*/

6. myA malloc(a 2-d array of size [n/nprocs + 2] by n+2);

 /*my assigned rows of A*/

7. initialize(myA); /*initialize my rows of A, in an unspecified way*/

15. while (!done) do

16. mydiff = 0; /*set local diff to 0*/
16a. if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW);

16b. if (pid != nprocs-1) then

 SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW);

16c. if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW);

16d. if (pid != nprocs-1) then

 RECEIVE(&myA[n’+1,0],n*sizeof(float), pid+1,ROW);

 /*border rows of neighbors have now been copied

 into myA[0,*] and myA[n’+1,*]*/

17. for i 1 to n’ do /*for each of my (nonghost) rows*/

18. for j 1 to n do /*for all nonborder elements in that row*/
19. temp = myA[i,j];

20. myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +

21. myA[i,j+1] + myA[i+1,j]);

22. mydiff += abs(myA[i,j] - temp);

23. endfor

24. endfor

 /*communicate local diff values and determine if

 done; can be replaced by reduction and broadcast*/

25a. if (pid != 0) then /*process 0 holds global total diff*/
25b. SEND(mydiff,sizeof(float),0,DIFF);

25c. RECEIVE(done,sizeof(int),0,DONE);

25d. else /*pid 0 does this*/

25e. for i 1 to nprocs-1 do /*for each other process*/
25f. RECEIVE(tempdiff,sizeof(float),*,DIFF);

25g. mydiff += tempdiff; /*accumulate into total*/
25h. endfor

25i if (mydiff/(n*n) < TOL) then done = 1;

25j. for i 1 to nprocs-1 do /*for each other process*/
25k. SEND(done,sizeof(int),i,DONE);

25l. endfor

25m. endif

26. endwhile

27. end procedure

https://docs.google.com/forms/d/e/1FAIpQLSczdJmMLaZ1tOtG6eEYdaPEgWQfXLJDncjvAWsDjeKiGGS2XQ/viewform?usp=sf_link

