
Assignment

How can we statically assign elements to processes?

	•
One option is “block assignment”—Row i is assigned to process (i/p(.
	
[image: image5.wmf]1.

int

pid

, n,

b

;

/*process id, matrix dimension and number of

processors to be used*/

2.

float

**myA;

3.

main()

4.

begin

5.

read(n);

read(

nprocs

);

/*read input matrix size and number of processes*/

8a.

CREATE (nprocs

-

1, Solve

);

8b.

Solve();

/*main process becomes a worker too*/

8c.

WAIT_FOR_END (nprocs

–

1);

/*wait for all child processes created to terminate*/

9.

end main

10.

procedure Solve()

11.

begin

13.

int i,j,

pid

,

n’ = n/nprocs

,

done = 0;

14.

float temp,

t

empdiff

,

mydiff

= 0;

/*private variables*/

6.

myA

¬

malloc

(a 2

-

d array of size [n/nprocs + 2] by n+2);

/*my assigned rows of A*/

7.

initialize(

myA

);

/*initialize my rows of A, in an unspecified way*/

15.

while (!done) do

16.

mydif

f

= 0;

/*set local diff to 0*/

16a.

if (pid != 0) then

SEND

(&

myA

[1,0],n*sizeof(float),pid

-

1,

ROW

);

16b.

if (pid

!

= nprocs

-

1) then

SEND

(&

myA

[n’,0],n*sizeof(float),pid+1,

ROW

);

16c.

if (pid != 0) then

RECEIVE

(&

myA

[0,0],n*sizeof(float),pid

-

1,

ROW

);

16d.

if (pid != nprocs

-

1) then

RECEIVE

(&

myA

[n’+1,0],n*sizeof(float), pid+1,

ROW

);

/*border rows of neighbors have now been copied

into myA[0,*] and myA[n’+1,*]*/

17.

for i

¬

1 to n

’

do

/*for each of my (nonghost) rows*

/

18.

for j

¬

1 to n do

/*for all nonborder elements in that row*/

19.

temp =

myA

[i,j];

20.

myA

[i,j] = 0.2 * (

myA

[i,j] +

myA

[i,j

-

1] +

myA

[i

-

1,j] +

21.

myA

[i,j+1] +

myA

[i+1,j]);

22.

mydiff

+= abs(

myA

[i,j]

-

temp);

23.

end

for

24.

endfor

/*communicate local diff values and determine if

done; can be replaced by reduction and broadcast*/

25a.

if (pid != 0) then

/*process 0 holds global total diff*/

25b.

SEND

(mydiff,sizeof(float),0,

DIFF

);

25c.

RECEIVE

(done,sizeof(int),0,

DONE

);

25d.

else

/*pid 0 does this*/

25e.

for i

¬

1 to nprocs

-

1 do

/*for each other process*/

25f.

RECEIVE

(tempdiff,sizeof(float),*,

DIFF

);

25g.

mydiff

+=

tempdiff

;

/*accumulate into total

*/

25h.

endfor

25i

if (

mydiff

/(n*n) < TOL) then

done = 1;

25j.

for i

¬

1 to nprocs

-

1 do

/*for each other process*/

25k.

SEND

(done,sizeof(int),i,

DONE

);

25l.

endfor

25m.

endif

26.

endwhile

27.

end procedure

•
Another option is “cyclic assignment—Process i is assigned rows i, i+p, i+2p, etc.

•
Another option is 2D contiguous block partitioning.

We could instead use dynamic assignment, where a process gets an index, works on the row, then gets a new index, etc. Is there any advantage to this?
What are advantages and disadvantages of these partitionings?

Static assignment of rows to processes reduces concurrency

But block assignment reduces communication, by assigning adjacent rows to the same processor.

How many rows now need to be accessed from other processors?
So the communication-to-computation ratio is now only O(

).

Orchestration

Once we move on to the orchestration phase, the computation model constrains our decisions.

Data-parallel model

In the code below, we assume that global declarations are used for shared data, and that any data declared within a procedure is private.

Global data is allocated with g_malloc.

Differences from sequential program:

•
for_all loops

•
decomp statement

•
mydiff variable, private to each process

•
reduce statement

[image: image1.wmf]p

0

p

1

p

2

p

3

The decomp statement has a twofold purpose.

•
It specifies the assignment of iterations to processes.

The first dimension (rows) is partitioned into nprocs contiguous blocks. The second dimension is not partitioned at all.

Specifying [CYCLIC, *, nprocs] would have caused a cyclic partitioning of rows among nprocs processes.

Specifying [*,CYCLIC, nprocs] would have caused a
cyclic partitioning of columns among nprocs processes.

Specifying [BLOCK, BLOCK, nprocs] would have implied a 2D contiguous block partitioning.

For all of these partitionings, if the grid is 1024 (1024, tell which processing element in a 64-PE system would compute A[33, 65].

•
It specifies the assignment of grid data to memories on a dis​tributed-memory machine. (Follows the owner-computes rule.)

The mydiff variable allows local sums to be computed.

The reduce statement tells the system to add together all the mydiff variables into the shared diff variable.

Shared-memory model

	In this model, we need mechan​isms to create processes and manage them.

After we create the processes, they interact as shown on the right.
	
[image: image2]

[image: image3.wmf]1.

int

pid

, n,

b

;

/*process id, matrix dimension and number of

processors to be used*/

2.

float

**myA;

3.

main()

4.

begin

5.

read(n);

read(

nprocs

);

/*read input matrix size and number of processes*/

8a.

CREATE (nprocs

-

1, Solve

);

8b.

Solve();

/*main process becomes a worker too*/

8c.

WAIT_FOR_END (nprocs

–

1);

/*wait for all child processes created to terminate*/

9.

end main

10.

procedure Solve()

11.

begin

13.

int i,j,

pid

,

n’ = n/nprocs

,

done = 0;

14.

float temp,

t

empdiff

,

mydiff

= 0;

/*private variables*/

6.

myA

¬

malloc

(a 2

-

d array of size [n/nprocs + 2] by n+2);

/*my assigned rows of A*/

7.

initialize(

myA

);

/*initialize my rows of A, in an unspecified way*/

15.

while (!done) do

16.

mydif

f

= 0;

/*set local diff to 0*/

16a.

if (pid != 0) then

SEND

(&

myA

[1,0],n*sizeof(float),pid

-

1,

ROW

);

16b.

if (pid

!

= nprocs

-

1) then

SEND

(&

myA

[n’,0],n*sizeof(float),pid+1,

ROW

);

16c.

if (pid != 0) then

RECEIVE

(&

myA

[0,0],n*sizeof(float),pid

-

1,

ROW

);

16d.

if (pid != nprocs

-

1) then

RECEIVE

(&

myA

[n’+1,0],n*sizeof(float), pid+1,

ROW

);

/*border rows of neighbors have now been copied

into myA[0,*] and myA[n’+1,*]*/

17.

for i

¬

1 to n

’

do

/*for each of my (nonghost) rows*

/

18.

for j

¬

1 to n do

/*for all nonborder elements in that row*/

19.

temp =

myA

[i,j];

20.

myA

[i,j] = 0.2 * (

myA

[i,j] +

myA

[i,j

-

1] +

myA

[i

-

1,j] +

21.

myA

[i,j+1] +

myA

[i+1,j]);

22.

mydiff

+= abs(

myA

[i,j]

-

temp);

23.

end

for

24.

endfor

/*communicate local diff values and determine if

done; can be replaced by reduction and broadcast*/

25a.

if (pid != 0) then

/*process 0 holds global total diff*/

25b.

SEND

(mydiff,sizeof(float),0,

DIFF

);

25c.

RECEIVE

(done,sizeof(int),0,

DONE

);

25d.

else

/*pid 0 does this*/

25e.

for i

¬

1 to nprocs

-

1 do

/*for each other process*/

25f.

RECEIVE

(tempdiff,sizeof(float),*,

DIFF

);

25g.

mydiff

+=

tempdiff

;

/*accumulate into total

*/

25h.

endfor

25i

if (

mydiff

/(n*n) < TOL) then

done = 1;

25j.

for i

¬

1 to nprocs

-

1 do

/*for each other process*/

25k.

SEND

(done,sizeof(int),i,

DONE

);

25l.

endfor

25m.

endif

26.

endwhile

27.

end procedure

What are the main differences between the serial program and this program?

•
The first process creates nprocs–1 worker processes. All n processes execute Solve.

All processes execute the same code.

But all do not execute the same instructions at the same time.

•
Private variables like mymin and mymax are used to control loop bounds.

•
All processors need to—

°
complete an iteration before any process tests for convergence. Why?
°
test for convergence before any process starts the next iteration. Why?

Notice the use of barrier synchronization to achieve this.

What could happen if the barrier at Line 16a was removed?

What could happen if the barrier at Line 25d was removed?

What could happen if the barrier at Line 25f was removed?
•
Locks must be plsaced around updates to diff, so that no two processors update it at once. Otherwise, inconsistent results could ensue.

p1
p2

r1 (diff

{ p1 gets 0 in its r1}

r1 (diff
{ p2 also gets 0}

r1 (r1+r2

{ p1 sets its r1 to 1}

r1 (r1+r2
{ p2 sets its r1 to 1}

diff (r1

{ p1 sets diff to 1}

diff (r1
{ p2 also sets diff to 1}
If we allow only one processor at a time to access diff, we can avoid this race condition.

What is one performance problem with using locks?

Note that at least some processors need to access diff as a non-local variable.

What is one technique that our shared-memory program uses to diminish this problem of serialization?

Message-passing model

The program for the message-passing model is also similar, but again there are several differences.

· There’s no shared address space, so we can’t declare array A to be shared.

Instead, each processor holds the rows of A that it is working on.
· The subarrays are of size (n/nprocs + 2) ((n + 2).

This allows each subarray to have a copy of the boundary rows from neighboring processors. Why is this done?

These ghost rows must be copied explicitly, via send and receive operations.

Note that send is not synchronous; that is, it doesn’t make the process wait until a corresponding receive has been executed.

What problem would occur if it did?

•
Since the rows are copied and then not updated by the processors they have been copied from, the boundary values are more out-of-date than they are in the sequential version of the program.

This may or may not cause more sweeps to be needed for convergence.

•
The indexes used to reference variables are local indexes, not the “real” indexes that would be used if array A were a single shared array.

[image: image4.wmf]Sweep

Test Convergence

Processes

Solve

Solve

Solve

Solve

There are one or more typos in the if statements involving pids. Which statement(s)? What are the error(s)?
1.

int n,

nprocs

;

/*grid size (n+2(n+2) and # of processes*/

2.

double **A, diff = 0;

3.

main()

4.

begin

5.

read(n); read(

nprocs

);

;

/*read input grid size and # of processes*/

6.

A



G_MALLOC

 (a 2-d array of size n+2 by n+2 doubles);

7.

initialize(A);

/*initialize the matrix A somehow*/

8.

Solve (A);

/*call the routine to solve equation*/

9.

end main

10.

procedure Solve(A)

/*solve the equation system*/

11.

double **A;

 /* A is an (n+2(n+2) array*/

12.

begin

13.

int i, j, done = 0;

14.

float

mydiff

 = 0, temp;

14a.

DECOMP A[BLOCK,*, nprocs];

15.

while (!done) do

/*outermost loop over sweeps*/

16.

mydiff

 = 0;

/*initialize maximum difference to 0 */

17.

for_all

 i



 1 to n do

/*sweep over non-border points of grid*/

18.

for_all

 j



 1 to n do

19.

temp = A[i,j];

/*save old value of element*/

20.

A[i,j]



 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +

21.

A[i,j+1] + A[i+1,j]);

/* compute average*/

22.

mydiff += abs(A[i,j] - temp);

23.

end for_all

24.

end for_all

24a.

REDUCE (mydiff, diff, ADD);

25.

if (diff/(n*n) < TOL) then done = 1;

26.

end while

1.

int n,

nprocs;

/*matrix dimension and number of processors to be used*/

2a.

double**A, diff;

/*A is global (shared) array representing the grid*/

/*diff is global (shared) maximum difference in current

sweep*/

2b.

LOCKDE

C(diff_lock);

/*declaration of lock to enforce mutual exclusion*/

2c.

BARDEC (bar1);

/*barrier declaration for global synchronization between

sweeps*/

3.

main()

4.

begin

5.

read(n); read(

nprocs

);

/*read input matrix size and number of processes */

6.

A



-

 (a two-dimensional array of size n+2 by n+2 doubles);

7.

initialize(A);

/*initialize A in an unspecified way*/

8a.

CREATE (nprocs–1, Solve, A);

8.

Solve(A);

/*main process becomes a worker too*/

8b.

WAIT_FOR_END (nprocs–1);

/*wait for all child processes created to terminate*/

9.

end main

10.

procedure Solve(A)

11.

double**A;

/*A is entire n+2-by-n+2 shared array,

as in the sequential program*/

12.

begin

13.

int i,j,

pid

, done = 0;

14.

float temp,

mydiff

 = 0;

/*private variables*/

14a.

int mymin = 1 + (pid * n/nprocs);

/*assume that n is exactly divisible by*/

14b.

int mymax = mymin + n/nprocs - 1

/*nprocs for simplicity here*/

15.

while (!done) do

/* outer loop over all diagonal elements*/

16.

mydiff

=

 diff

=

0

;

/*set global diff to 0 (okay for all to do it)*/

16a.

BARRIER(bar1, nprocs);

/*ensure all reach here before anyone modifies diff*/

17.

for i



mymin

 to

mymax

 do

/*for each of my rows */

18.

for j



 1 to n do

/*for all nonborder elements in that row*/

19.

temp = A[i,j];

20.

A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +

21.

A[i,j+1] + A[i+1,j]);

22.

mydiff

 += abs(A[i,j] - temp);

23.

endfor

24.

e

ndfor

25a.

LOCK(diff_lock);

/*update global diff if necessary*/

25b.

diff +=

mydiff

;

25c.

UNLOCK(diff_lock);

25d.

BARRIER(bar1, nprocs);

/*ensure all reach here before checking if done*/

25e.

if (diff/(n*n) < TOL) then done = 1;

/*check convergence; all get

same answer*/

25f.

BARRIER(bar1, nprocs);

26.

endwhile

27.

end procedure

� EMBED Word.Document.8 \s ���

© 2025 Edward F. Gehringer
CSC/ECE 506 Lecture Notes, Spring 2025

Lecture 8
Architecture of Parallel Computers

_1042438981.doc

p

0

3

p

2

p

1

p

_1641757832.doc
1.
int pid, n, b;

/*process id, matrix dimension and number of

processors to be used*/

2.
float **myA;

3.
main()

4.
begin

5.

read(n);
 read(nprocs);

/*read input matrix size and number of processes*/

8a.

CREATE (nprocs-1, Solve);

8b.

Solve();

/*main process becomes a worker too*/

8c.

WAIT_FOR_END (nprocs–1);
/*wait for all child processes created to terminate*/

9.
end main

10.
procedure Solve()

11.
begin

13.

int i,j, pid, n’ = n/nprocs, done = 0;

14.

float temp, tempdiff, mydiff = 0;

/*private variables*/

6.
myA (malloc(a 2-d array of size [n/nprocs + 2] by n+2);

/*my assigned rows of A*/

7.
initialize(myA);

/*initialize my rows of A, in an unspecified way*/

15.
while (!done) do

16.

mydiff = 0;

/*set local diff to 0*/

16a.

if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW);

16b.

if (pid != nprocs-1) then

SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW);

16c.

if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW);

16d.

if (pid != nprocs-1) then

RECEIVE(&myA[n’+1,0],n*sizeof(float), pid+1,ROW);

/*border rows of neighbors have now been copied

into myA[0,*] and myA[n’+1,*]*/

17.

for i (1 to n’ do

/*for each of my (nonghost) rows*/

18.

for j (1 to n do

/*for all nonborder elements in that row*/

19.

temp = myA[i,j];

20.

myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +

21.

myA[i,j+1] + myA[i+1,j]);

22.

mydiff += abs(myA[i,j] - temp);

23.

endfor

24.

endfor

/*communicate local diff values and determine if

done; can be replaced by reduction and broadcast*/

25a.

if (pid != 0) then

/*process 0 holds global total diff*/

25b.

SEND(mydiff,sizeof(float),0,DIFF);

25c.

RECEIVE(done,sizeof(int),0,DONE);

25d.

else

/*pid 0 does this*/

25e.

for i (1 to nprocs-1 do

/*for each other process*/

25f.

RECEIVE(tempdiff,sizeof(float),*,DIFF);

25g.

mydiff += tempdiff;

/*accumulate into total*/

25h.

endfor

25i

if (mydiff/(n*n) < TOL) then

done = 1;

25j.

for i (1 to nprocs-1 do

/*for each other process*/

25k.

SEND(done,sizeof(int),i,DONE);

25l.

endfor

25m.

endif

26.
endwhile

27.
end procedure

