

Lecture 5 Architecture of Parallel Computers 1

Finding parallel tasks across iterations

[§3.3.1] Analyze loop-carried dependences:

• Dependences must be enforced (especially true dependences;
other dependences can be removed by privatization)

• There are opportunities for parallelism when some dependences
are not present.

Example 1

LDG:

We can divide the loop into two parallel
tasks (one with odd iterations and
another with even iterations):

for (i=2; i<=n; i++)

 S: a[i] = a[i-2];

for (i=2; i<=n; i+=2)

 S: a[i] = a[i-2];

for (i=3; i<=n; i+=2)

 S: a[i] = a[i-2];

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025 2

Example 2

LDG

How many parallel tasks are there here?

Example 3

LDG

Identify which
nodes are not
dependent on each other

i

j

1

2

n

n 2 1 . . .

. . .

for (i=0; i<n; i++)

 for (j=0; j< n; j++)

 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++)

 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

j

1

2

n

n 2 1 . .
.

Note: each
edge represents
both true, and
anti-dependences

Lecture 5 Architecture of Parallel Computers 3

In each anti-diagonal, the nodes are independent of each other

We need to rewrite the code to iterate over anti-diagonals:

Calculate number of anti-diagonals
for each anti-diagonal do
 Calculate the number of points in the current anti-diagonal
 for_all points in the current anti-diagonal do
 Compute the value of the current point in the matrix

Parallelize the loops highlighted above.

i

1

2

n

n 2 1 ...

.

...

Note: each

edge represents

both true, and

anti-dependences

for (i=1; i <= 2*n-1; i++) {// 2n-1 anti-diagonals

 if (i <= n) {

 points = i; // number of points in anti-diag

 row = i; // first pt (row,col) in anti-diag

 col = 1; // note that row+col = i+1 always

 }

 else {

 points = 2*n – i;

 row = n;

 col = i-n+1; // note that row+col = i+1 always

 }

 for_all (k=1; k <= points; k++) {

 a[row][col] = … // update a[row][col]

 row--; col++;

 }

}

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025 4

DOACROSS Parallelism

[§3.3.2] Suppose we have this code:

Can we execute anything
in parallel?

Well, we can’t run the iterations of the for loop in parallel, because …

S[i] →T S[i+1] (There is a loop-carried dependence.)

But, notice that the b[i]*c[i] part has no loop-carried dependence.

This suggests breaking up the loop into two:

The first loop is ||izable.
The second is not.

Execution time: N(TS1+TS2)

What is a disadvantage of
this approach?

Here’s how to solve this problem:

What is the execution time now?
Function parallelism

• [§3.3.3] Identify dependences in a loop body.

• If there are independent statements, can split/distribute the loops.

Example:

for (i=1; i<=N; i++) {

 S1: temp[i] = b[i] * c[i];

}

for (i=1; i<=N; i++) {

 S2: a[i] = a[i-1] + temp[i];

}

post(0);

for_all (i=1; i<=N; i++) {

 S1: temp = b[i] * c[i];

 wait(i-1);

 S2: a[i] = a[i-1] + temp;

 post(i);

}

for (i=1; i<=N; i++) {

 S: a[i] = a[i-1] + b[i] * c[i];

}

Lecture 5 Architecture of Parallel Computers 5

Loop-carried dependences:

Loop-indep. dependences:

Note that S4 has no dependences with other statements

After loop distribution:

Each loop is a parallel task.

This is called function
parallelism.

It can be distinguished from
data parallelism, which we
saw in DOALL and
DOACROSS.

Further transformations can be performed (see p. 64 of text).

 “S1[i] →A S2[i+1]” implies that S2 at iteration i+1 must be

executed after S1 at iteration i. Hence, the dependence is not violated
if all S2s execute after all S1s.

Characteristics of function parallelism:

•

•

Can use function parallelism along with data parallelism when data
parallelism is limited.

DOPIPE Parallelism

[§3.3.4] Another strategy for loop-carried dependences is pipelining the
statements in the loop.

Consider this situation:

for (i=0; i<n; i++) {

 S1: a[i] = b[i+1] * a[i-1];

 S2: b[i] = b[i] * coef;

 S3: c[i] = 0.5 * (c[i] + a[i]);

 S4: d[i] = d[i-1] * d[i];

}

for (i=0; i<n; i++) {

 S1: a[i] = b[i+1] * a[i-1];

 S2: b[i] = b[i] * coef;

 S3: c[i] = 0.5 * (c[i] + a[i]);

}

for (i=0; i<n; i++) {

 S4: d[i] = d[i-1] * d[i];

}

for (i=2; i<=N; i++) {

 S1: a[i] = a[i-1] + b[i];

 S2: c[i] = c[i] + a[i];

}

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSeJV9uDV25lLnREAHG2OK13Bnx26UT8FBXooRZT2gfPrstv4w/viewform

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025 6

Loop-carried dependences:

Loop-indep. dependences:

To parallelize, we just need to make sure the two statements are
executed in sync:

Question: What’s the difference
between DOACROSS and
DOPIPE?

Determining variable scope

[§3.6] This step is specific to the shared-memory programming model.
For each variable, we need to decide how it is used. There are three
possibilities:

• Read-only: variable is only read by multiple tasks

• R/W non-conflicting: variable is read, written, or both by only one
task

• R/W conflicting: variable is written by one task and may be read
by another

Intuitively, why are these cases different?

for (i=2; i<=N; i++) {

 a[i] = a[i-1] + b[i];

 post(i);

}

for (i=2; i<=N; i++) {

 wait(i);

 c[i] = c[i] + a[i];

}

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSckf_Yzf5qdNG6_FG76wbDSN42htvXFuJBHTl1T1XI-je9mYw/viewform

Lecture 5 Architecture of Parallel Computers 7

Example 1

Let’s assume
each iteration
of the for i
loop is a
parallel task.

Fill in the tableaus here.

Read-only R/W non-conflicting R/W conflicting

Now, let’s assume that each for j iteration is a separate task.

Read-only R/W non-conflicting R/W conflicting

Do these two decompositions create the same number of tasks?

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];

 S3: b[i][j] = a[i][j-1] * d[i][j];

 }

https://docs.google.com/forms/d/e/1FAIpQLSff4tebmzxgeF5Qev2wtlYKt-B5XfwcENG8BvB4HQTN0YFLSA/viewform?usp=sf_link

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025 8

Example 2

Let’s assume that
each for j iteration is
a separate task.

Read-only R/W non-conflicting R/W conflicting

Exercise: Suppose each for i iteration were a separate task …

Read-only R/W non-conflicting R/W conflicting

To test your knowledge of this approach, try the recent homework
problem on the following page:

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S1: a[i][j] = b[i][j] + c[i][j];

 S2: b[i][j] = a[i-1][j] * d[i][j];

 S3: e[i][j] = a[i][j];

 }

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSdPjfi185SXMRb7QvQihyYbrclbcSgEo6-n9HyVdD6oFenvLg/viewform

Lecture 5 Architecture of Parallel Computers 9

Problem k. (15 points) The following code is a commonly used algorithm in image processing
applications.

Consider an image f with width=ImageWidth and height=ImageHeight. f is a 2D grid of pixels. k is a
kernel of width=2w+1 and height=2h+1 where (2w+1) < ImageWidth and (2h+1) < ImageHeight. The
image f is processed using the kernel k to produce a new image g as shown:

for y = 0 to ImageHeight do
 for x = 0 to ImageWidth do
 sum = 0
 for i= -h to h do
 for j = –w to w do
 sum = sum + k[j,i] * f [x – j, y – i]

 end for
 end for
 g[x y] = sum
 end for
end for

(a). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if the for y loop is
parallelized.

Read only R/W non-conflicting R/W conflicting

(b). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if (only) the for i loop is
parallelized. Assume that the for i tasks for the previous value of x must complete before the for i
tasks of the current value of x are started.

Read only R/W non-conflicting R/W conflicting

(c). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if the for i loop is
parallelized. Assume that the for i tasks for the previous value of x do not have to complete before
the for i tasks of the current value of x are started.

Read only R/W non-conflicting R/W conflicting

