Shared-Memory Parallel

Programmlng Algonithm/cods

[§3.1] Solihin identifies several

steps in parallel programming. Identufying parallel tasks

Parallel tasks

The first step is identifying parallel .
tasks. Can you give an example? | Deternumng vanable scopes

The next step is identifying .
variable scopes. What does this Task synchronization
mean? )

The next step is grouping tasks

Grouping tasks into threads

into threads. What factors need \
to be taken into account to do _ Threads
this? :

Mappng threads onlo processors

' Parallel program

Then threads must be
synchronized. How did we see this done in the three parallel-
programming models?

What considerations are important in mapping threads to processors?

Solihin says that there are three levels of parallelism:

e program level
e algorithm level
e code level

Identifying loop-level parallelism

[8§3.2] Goal: given a code, without knowledge of the algorithm, find
parallel tasks.

Focus on loop-dependence analysis.

Notations:

Lecture 4 Architecture of Parallel Computers 1


https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfX8_wOluYK4W8HCf1PB-BB0DpL6kF7AZd3qOVyC3YVYhbB6Q/viewform

S is a statement in the source code

S[i, J, ...] denotes a statement in the loop iteration [i, j, ...]
“S1 then S2” means that S1 happens before S2
If S1 then S2:

S1 —»T S2 denotes true dependence, i.e., S1 writes to a
location that is read by S2

S1 —»A S2 denotes anti-dependence, i.e., S1 reads a
location written by S2

S1 —»0 S2 denotes output dependence, i.e., S1 writes to the
same location written by S2

Example:
Sl:x=2;
S2:y =x;
S3:y=x+4;
S4:x=y;

Exercise: Identify the dependences in the above code.

Loop-independent vs. loop-carried dependences

[§3.2] Loop-carried dependence: dependence exists across
iterations; i.e., if the loop is removed, the dependence no longer
exists.

Loop-independent dependence: dependence exists within an
iteration; i.e., if the loop is removed, the dependence still exists.

Example:

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025 2


https://docs.google.com/forms/d/e/1FAIpQLScJI9DjG0rqOHgzx6A5bpdmSZKBtzN9M8aFdP68wBYayTVRAA/viewform?usp=sf_link

for (i=1; i<n; i++) { S1[i] »T S1[i+1]: loop-carried
S1: a[i] - ali-1] + 1; S1[i] »T s2[i]: loop-
} S2: b[i] = al[il; independent
S3[i,j] »T S3[i,j+1]:
for (i=1; i<n; i++) e loop-carried on for
for (j=1; j< n; j++) loop
S3: alil[j] = ali]l[j-1] + 1; :
e no loop-carried
for (i=1; i<n; i++) dependence in for i
for (j=1; j< n; Jj++) loop
S4: ali]l[j] = ali-11[3]1 + 1;
S4[i,j] »Ts4[i+1,3]:

e no loop-carried dependence in for 7 loop
e loop-carried on for i loop

Iteration-space Traversal Graph (ITG)

[§3.2.1] The ITG shows graphically the order of traversal in the
iteration space. This is sometimes called the happens-before
relationship. In an ITG,

e A node represents a point in the iteration space

e A directed edge indicates the next point that will be
encountered after the current point is traversed

Example:
for (i=1; i<4; i++)
for (j=1; j<4; j++)
S3: alillj] = alillj-1]1 + 1;

Lecture 4 Architecture of Parallel Computers 3



1 2 3
1 <:> ><:> >

2 lg——@
3 5@ -0 D)

Loop-carried Dependence Graph (LDG)

e LDG shows the true/anti/output dependence relationship
graphically.

e A node is a point in the iteration space.

e A directed edge represents the dependence.

Example:
for (i=1; i<4; i++)
for (3=1; j<4; j++)
S3: alil[J] = alil[J-1] + 1;

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025



1 2 3

1 &—0—0
T

2 O O O
T

3 O0—0—0

Another example:

for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
Sl: aflill[jl=alill[j-1]+ali]l[J+1] +ali-11[J] +ali+l][]
for (i=1; i<=n; i++)
for (3=1; j<=n; j++) {
S2: afli][J] = bl[i][3] + cli]l[J];
S3: b[i][J] = alil[3-11 * d[i]l[3J];

e Drawthe ITG
o List all the dependence relationships

Note that there are two “loop nests” in the code.

e The first involves S1.
e The other involves S2 and S3.

What do we know about the ITG for these nested loops?

Lecture 4 Architecture of Parallel Computers




Q00

Dependence relationships for Loop Nest 1

e True dependences:

o S1[i,]j] »TS1[i,j+1]
o S1[i,j] »TS1[i+1,]]

e Output dependences:
o None

e Anti-dependences:

o S1[i,j] »>AS1[i+1,75]
o S1[i,j] »>ASL1[i,j+1]

Exercise: Suppose we dropped off the first half of S1, so we had
Sl: aflil[3] = ali-111[3]1 + ali+1][J];

or the last half, so we had

Sl: ali]l[3j] = alill[3-1] + ali]l[j+1];

Which of the dependences would still exist?

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025



https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScUQnr6EAkRG4DYvu8o8VzZj6WYTUftc_AWUu55r3wLXOoWoA/viewform

Draw the LDG for Loop Nest 1.

]
1 2 n
1 (O >
Note: each
edge represents
- both true and
anti-dependences
() >
n O >

Dependence relationships for Loop Nest 2

e True dependences:
o S2[i,j] »TS3[i,j+1]
e Output dependences:
o None
e Anti-dependences:
o S2[i,j] »AS3[i,j] (loop-independent dependence)

Lecture 4 Architecture of Parallel Computers



Draw the LDG for Loop Nest 2.

1 2
1 @—0

) 4

n

O Note: each

edge represents

only true dependences

2 O—0—0

n O&—0—0

Why are there no vertical edges in this graph? Answer here.

Why is the anti-dependence not shown on the graph?

Exercise: Consider this code sequence.

List the dependences, and say whether they are loop independent or
loop carried. Then draw the ITG and LDG (you don’t need to submit
these).

© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025


https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScXLNX2AVGX9scKuSqY9i09qFzTRFfCp7pu6Og0INDlbakIDQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfjh6C6TakpubGUIm9FiGdrQZFwThgdNLNC8M_mZYA3HOSgOA/viewform?usp=sf_link

