
 

Lecture 11 Architecture of Parallel Computers 1 

Cache memories 

[§5.1]  A cache is a small, fast memory which is transparent to the 
processor. 

• The cache duplicates information that is in main memory.   
 

• With each data block in the cache, there is associated an 
identifier or tag.  This allows the cache to be content 
addressable. 

37

26

49

7

information information
26?

Tag

Key

 

• Caches are smaller 
and faster than main 
memory.   
 

• Secondary storage, on 
the other hand, is 
larger and slower.   
 
 

Cache

Main memory

Secondary storage

 

• A cache miss is the term analogous to a page fault.  It 
occurs when a referenced word is not in the cache. 

° Cache misses must be handled much more quickly 
than page faults.  Thus, they are handled in hardware. 

• Caches can be organized according to four different 
strategies: 

° Direct 

° Fully associative 

° Set associative 

° Sectored 
 



© 2025 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2025 2 

  
 

 
• A cache implements several different policies for retrieving 

and storing information, one in each of the following 
categories: 

° Placement policy—determines where a block is placed 
when it is brought into the cache. 

° Replacement policy—determines what information is 
purged when space is needed for a new entry. 

° Write policy—determines how soon information in the 
cache is written to lower levels in the memory hierarchy. 

Cache memory organization 

[§5.2]  Information is moved into and out of the cache in blocks.  
When a block is in the cache, it occupies a cache line.  Blocks are 
usually larger than one byte, 

• to take advantage of locality in programs, and 
• because memory may be organized so that it can overlap 

transfers of several bytes at a time. 
 
The block size is the same as the line size of the cache. 

A placement policy determines where a particular block can be 
placed when it goes into the cache.  E.g., is a block of memory 
eligible to be placed in any line in the cache, or is it restricted to a 
single line? 

In our examples, we assume— 

• The cache contains 2048 bytes, 
 with  16 bytes per line 
 Thus it has     lines. 
 
• Main memory is made up of  256K bytes, or 16384 blocks. 
 Thus an address consists of  
 



 

Lecture 11 Architecture of Parallel Computers 3 

We want to structure the cache to achieve a high hit ratio. 

• Hit—the referenced information is in the cache. 
• Miss—referenced information is not in cache, must be read 

in from main memory. 
 

Hit ratio      
Number of hits

Total number of references  
 
We will study caches that have three different placement policies 
(direct, fully associative, set associative). 

Direct 

Only 1 choice of where to place a block. 

block i  →  line  i mod 128 

Each line has its own tag associated with it. 

When the line is in use, the tag contains the high-order seven bits of 
the main-memory address of the block. 

 Main memory 

Block 0 
Block 1 
Block 2 

Block 127 
Block 128 

Block 129 

Block 255 
Block 256 
Block 257 

Block 4095 
Block 4096 

Block 16383 

• 
• 

• 
• 

• 
• 

• 
• 

Tag 

Tag 

Tag 

Line 1 

Line 127 

7 bits 

Cache 

Tag Index Offset 

7 7 4 

Main-memory address 

Line 0 

 



© 2025 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2025 4 

 
To search for a word in the cache, 

1. Determine what line to look in (easy; just select bits 10–4 of 
the address). 

 
2. Compare the leading seven bits (bits 17–11) of the address 

with the tag of the line.  If it matches, the block is in the 
cache. 

 
3. Select the desired bytes from the line. 
 

 Advantages: 

 Fast lookup (only one comparison needed). 

 Cheap hardware (only one tag needs to be checked). 

 Easy to decide where to place a block 

 Disadvantage:  Contention for cache lines. 

Exercise:  What would the size of the tag, index, and offset fields be 
if— 

• the line size from our example were doubled, without changing 
the size of the cache?   

• the cache size from our example were doubled, without 
changing the size of the line?   

• an address were 32 bits long, but the cache size and line size 
were the same as in the example?   

 
Fully associative 

Any block can be placed in any line in the cache. 

This means that we have 128 choices of where to place a block. 

 block i  → any free (or purgeable) cache location 

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfF_Qb4KinLQeIB47FIt-XG8iFJ0O6NDeX0cqKi0xZW1n5X9w/viewform


 

Lecture 11 Architecture of Parallel Computers 5 

 

 Main memory 

Tag 

Tag 

Tag 

Line 0 

Line 1 

Line 127 

14 bits 

Cache 

Tag Offset 

4 

Main-memory address 

14 

Block 0 
Block 1 

Block   

Block 16382 
Block 16383 

• 
• 

• 
• 

• 
• 

i 

• 
• 

 
 
Each line has its own tag associated with it. 

When the line is in use, the tag contains the high-order fourteen bits 
of the main-memory address of the block. 

To search for a word in the cache, 

1. Simultaneously compare the leading 14 bits (bits 17–4) of 
the address with the tag of all lines.  If it matches any one, 
the block is in the cache. 

2. Select the desired bytes from the line. 

 Advantages: 

 Minimal contention for lines. 

 Wide variety of replacement algorithms feasible. 

Exercise:  What would the size of the tag and offset fields be if— 

• the line size from our example were doubled, without changing 
the size of the cache?   

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSdGnm2ezESwbSaR_BCgSHFaXsEd4OfbAcX33qU9JHFegqd7sw/viewform


© 2025 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2025 6 

• the cache size from our example were doubled, without 
changing the size of the line?   

• an address were 32 bits long, but the cache size and line size 
were the same as in the example?   

 Disadvantage: 

 The most expensive of all organizations, due to the high 
cost of associative-comparison hardware.   

 
A flowchart of cache operation:  The process of searching a fully 
associative cache is very similar to using a directly mapped cache.  
Let us consider them in detail. 

Page

number

Byte within

page

Virtual address

Search TLB

TLB hit?

Select TLB victim

to be replaced

Translate virt. addr.

to physical addr.

No

Enter new

(virt., phys.)

addr. pair in TLB

Yes
Block

number

Byte within

block

Update

replacement status

of TLB entries

Search tags

of cache lines

Cache

hit?

No

Yes

Fetch block from

main memory

Select cache victim

to be replaced

Store new block

in cache

Update

replacement status

of cache entries

Fetch block

from cache

Select desired

bytes from block

Send byte(s)

to processor
 



 

Lecture 11 Architecture of Parallel Computers 7 

Which steps would be different if the cache were directly mapped?  
 
 

Set associative 

1 < n < 128  choices of where to place a block. 

A compromise between direct and fully associative strategies. 

The cache is divided into s sets, where s is a power of 2. 

block i  →  any line in set i mod s 

Each line has its own tag associated with it. 

When the line is in use, the tag contains the high-order eight bits of 
the main-memory address of the block.  (The next six bits can be 
derived from the set number.) 

 
Main memory 

Block 0 
Block 1 

Block 16383 

• 
• 

• 
• 

• 
• 

Tag 
Line 0 

8 bits 
Cache 

Tag Offset 

4 

Main-memory address 

• 
• 

Tag 
Line 1 

Tag 
Line 2 

Tag 
Line 3 

Tag 
Line 126 

Tag 
Line 127 

Block 4095 

Block 65 

Block 63 
Block 64 

Set 0 

Set 1 

Set 63 

Index 

8 6 

 



© 2025 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2025 8 

 
Exercise:  What would the size of the tag, index, and offset fields be 
if— 

• the line size from our example were doubled, without changing 
the size of the cache?   

• the set size from our example were doubled, without changing 
the size of a line or the cache?   

• the cache size from our example were doubled, without 
changing the size of the line or a set?   

• an address were 32 bits long, but the cache size and line size 
was the same as in the example?   

To search for a word in the cache, 

1. Select the proper set (i mod s). 

2. Simultaneously compare the leading 8 bits (bits 17–10) of 
the address with the tag of all lines in the set.  If it matches 
any one, the block is in the cache. 

 At the same time, the (first bytes of) the lines are also being 
read out so they will be accessible at the end of the cycle. 

3. If a match is found, gate the data from the proper block to 
the cache-output buffer. 

4. Select the desired bytes from the line 
 

= ?

= ?

= ?

= ?

Desired block # Tags from set

Select

Select

Select

Select

Lines from set

Data out
Cache output-

data buffer

 

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSex75zjbgttwazLXRvTaEZhT2I4auUBjv8npe2B13KtoqS2rw/viewform


 

Lecture 11 Architecture of Parallel Computers 9 

• All reads from the cache occur as early as possible, to 
allow maximum time for the comparison to take place. 

• Which line to use is decided late, after the data have 
reached high-speed registers, so the processor can receive 
the data fast. 

Factors influencing line lengths: 

• Long lines  higher hit ratios.   
 

• Long lines  less memory devoted to tags. 
 

• Long lines  longer memory transactions (undesirable in a 
multiprocessor). 

 

• Long lines  more write-backs (explained below). 
 

For most machines, line sizes between 32 and 128 bytes perform 
best. 

If there are b lines per set, the cache is said to be b-way set 
associative.  How many way associative was the example above? 

The logic to compare 2, 4, or 8 tags simultaneously can be made 
quite fast. 

But as b increases beyond that, cycle time starts to climb, and the 
higher cycle time begins to offset the increased associativity. 

Almost all L1 caches are less than 8-way set-associative.  L2 caches 
often have higher associativity. 

Two-level caches 

Write policy 

[§5.2.3]  Answer these questions, based on the text. 

What are the two write policies mentioned in the text?   
 

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSceR4cXR5qOo4KZurGHtyOGbc6nQR-YBc5rUR9vPaOjcrnqiQ/viewform


© 2025 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2025 10 

Which one is typically used when a block is to be written to main 
memory, and why?   
 

Which one can be used when a block is to be written to a lower level 
of the cache, and why?   
 

Can you explain what error correction has to do with the choice of 
write policy?   
 
 
 

Explain what a parity bit has to do with this.   
 
 
 

Principle of inclusion 

[§5.2.4]  To analyze a second-level cache, we use the principle of 
inclusion—a large second-level cache includes everything in the first-
level cache. 

We can then do the analysis by assuming the first-level cache did not 
exist, and measuring the hit ratio of the second-level cache alone. 

How should the line length in the second-level cache relate to the line 
length in the first-level cache?   
 
 

When we measure a two-level cache system, two miss ratios are of 
interest: 

• The local miss rate for a cache is the 

 
# misses experienced by the cache

number of incoming references   

 To compute this ratio for the L2 cache, we need to know 
the number of misses in  



 

Lecture 11 Architecture of Parallel Computers 11 

• The global miss rate of the cache is  

 
# L2 misses

# of references made by processor
   

 This is the primary measure of the L2 cache. 

What conditions need to be satisfied in order for inclusion to hold? 

• L2 associativity must be  L1 associativity, irrespective of 
the number of sets. 

 Otherwise, more entries in a particular set could fit into the 
L1 cache than the L2 cache, which means the L2 cache 
couldn’t hold everything in the L1 cache. 

• The number of L2 sets has to be  the number of L1 sets, 
irrespective of L2 associativity. 

 (Assume that the L2 line size is  L1 line size.) 

 If this were not true, multiple L1 sets would depend on a 
single L2 set for backing store.  So references to one L1 
set could affect the backing store for another L1 set. 

• All reference information from L1 is passed to L2 so that it 
can update its replacement bits. 

Even if all of these conditions hold, we still won’t have logical 
inclusion if L1 is write-back.  (However, we will still have statistical 
inclusion—L2 usually contains L1 data.) 


