
1

CSC/ECE 506: Architecture of Parallel Computers
Sample Final Examination

This was a 150-minute open-book test. You were to answer five of the six questions. Each
question was worth 20 points. If you answered all six questions, your five highest scores
counted.Question 1. The following code is taken from the MOESI PrRd and BusRdX
implementations. State-transition counters have been removed.

(a) (2 points each) Fill in the blanks below (and then answer the two questions on the next page).

Hint: You may need to use sharers_exclude() and c2c_supplier(). Answers are in red

below.

void MOESI::PrRd(ulong addr, int processor_number) {

 ……

 cache_line * line = find_line(addr);

if (line == NULL || line->get_state() == I){

 read_misses++;

cache_line *newline = allocate_line(addr);

 if (c2c_supplier(addr, processor_number) > 0){

 cache2cache++;

 }else{

 memory_transactions++;

 }

 if (sharers_exclude(addr, processor_number) > 0){

 I2S++;

 newline->set_state(S);

 }else{

 I2E++;

 newline->set_state(E);

 }

 bus_reads++;

 sendBusRd(addr, processor_number);

 }else{

 ᠁

 }

}

void MOESI::BusRdX(ulong addr) {

cache_line * line=find_line(addr);

if (line != NULL){

 cache_state state;

 state=line->get_state();

 if (state == S){

 invalidations++;

 line->set_state(I);

 }else if(state == O || state == M){

 invalidations++;

 flushes++;

 line->set_state(I);

 }else if(state == E){

 invalidations++;

 line->set_state(I);

 }

 }

}

2

(b) (3 points) Why do we need to separate the counting of transaction type and state setting in
PrRd()?

Answer: Because in MOESI, only cache blocks in state O or M can be the supplier. So if there is
such a cache block, it will be a cache-to-cache transaction; otherwise, main memory needs to
provide the data, even if there are other caches that hold the block.

(c) (3 points) What is the difference between Flush and FlushOpt? Give an example from the

code on the previous page.

Answer: FlushOpt exists for performance enhancement while Flush is for the correctness of the
MOESI protocol. One example would be the state == E in BusRdX(). Even though it has the
same code with state == S, there will be a FlushOpt there if FlushOpt is counted.

Question 2. (a) Consider a 3-processor DSM with private write-back caches. It uses a full bit-
vector implementation (FBV) of the directory-based MESI protocol. For simplicity’s sake, assume
that a cache contains only 1 word, and we are only concerned with a single line in the cache.

The table below uses one line to represent each operation. The table columns show

• for each cache, the state of its cache line, value in the cache line and the action induced
by the protocol. A dash (“–“) indicates that the line is empty.

• for the memory, the value in the corresponding memory cell, the directory state after the
operation, and the action induced by the protocol.

Initially, the caches are empty and the corresponding memory cell contains 1.

Fill in the blanks in the table. Note that the number in the bracket refers to the order that
messages are sent. For example, when processor 0 reads the location, it sends a message to
the home node [1]. The home node sends back a ReplyD [2].

Processor 0 Processor 1 Processor 2 Main Memory

Op State Data Action State Data Action State Data Action Data State,FBV Action

R0 E 1 [1]Read→H – – – – – – 1 EM,100 [2]ReplyD→P0

R1 S 1 [3]Flush→H
[3]Flush→P1

S 1 [1]Read→H – – – 1 S,110 [2]Int→P0

R2 S 1 – S 1 – S 1 [1]Read→H 1 S,111 [2]ReplyD→P2

W1=4 I - [3]InvAck→P1 M 4 [1]Upgr→H I – [3]InvAck→P1 1 EM,010 [2]Reply→P1
[2]Inv→P0`
[2]Inv→P2

W2=3 I – – I – [3]Flush→H
[3]Flush→P2
[3]InvAck→P2

M 3 [1]ReadX→H 4 EM,001 [2]Reply→P2
[2]Inv→P1

R2 I – – I – – M 3 – 4 EM,001 –

W0=7 M 7 [1]ReadX→H I – – I – [3]Flush→H
[3]Flush→P0
[3]InvAck→P0

3 EM,100 [2]Reply→P0
[2]Inv→P2

3

(b). There are several Read and ReadX processor transactions in the simplified directory-based
MESI coherence protocol finite-state diagram below. There is no processor “Write” transactions to
the main memory. Why?

Answer: This is a write-back protocol. So, processor write don’t write to the main memory. The
writes

occur only on flushes when the directory is in EM state and there are any Read or ReadX
requests or

when the line is written back to memory due to eviction (write-back transaction of the processor).

When the block is written back, these write transactions are generated by the cache controller
and

they don’t involve the processor and so are not shown in the diagram.

(d). How can an OTB (Outstanding Transaction Buffer) help with protocol races caused by out-
of-sync directory and protocol races caused by non-atomic messages?

In other words, what are the properties or end effects achieved by using an OTB when facing the
two protocol races mentioned above?

Answer: OTB temporarily stores the request messages and waiting for home node’s
acknowledgement of request completion. It is used to confirm the completion of certain
requests.

For races caused by out-of-sync directory, the request being confirmed is Flush. The processor
side will delay Read and ReadX requests to a block that is still being flushed. This is to ensure
the block is clean when the directory receives a Read/ReadX request.

For races caused by non-atomic messages, all requests need to be confirmed. The processor
delays requests to a block if the previous request to that block has not been handled. This is to
ensure each request to a block is performed atomically.

4

Question 3.

(4 points each) For each code fragment below, put a check mark “✓ ” below all the consistency

models under which they are legal. For each one that is not legal, write “X”. For partial credit, you

must give a reason. Notice there are 2 variables in some code fragments.

(a)

P1: W(X) 1 W(Y) 2 R(X) 1 R(X) 3

P2: R(Y) 2 W(X) 3

P3: R(X) 1 R(Y) 2 R(X) 1

Sequential Causal Processor PRAM

Answer:

Sequential Causal Processor PRAM

X X ✓ ✓

P1-W(Y) 2 and P2-W(X) 3 are causally related. But this write order is violated in P3. So it is not
causally consistent and therefore not sequentially consistent.

The only write order in the same processor is P1-W(X) 1 and P1-W(Y) 2. This is maintained in
P3. Therefore it is PRAM consistent.

The write order to X observed is P1-W(X) 1, P2-W(X)3. This is maintained by both P1 and P3
(only sees 1 value). So it is coherent and therefore processor consistent.

(b)

P1: W(X) 2 R(X) 2

P2: W(X) 3 R(X) 2

P3: R(X) 3 R(X) 2

Sequential Causal Processor PRAM

Answer:

5

Sequential Causal Processor PRAM

✓ ✓ ✓ ✓

All processor see P2-W(X)3, P1-W(X)2 in that order. So it is sequentially consistent.

(c)

P1: W(X) 1 R(X) 2 W(X) 3

P2: R(X) 2 R(X) 3

P3: W(X) 2 R(X) 1 R(X)3

Sequential Causal Processor PRAM

Answer:

Sequential Causal Processor PRAM

X ✓ X ✓

It is not coherent because the first 2 W(X) are seen by P1 and P3 in different orders.

There are 2 write orders in question: P1-W(X) 1, P1-W(X) 3 and P3-W(X) 2, P1-W(X)3. The
second pair is causally related.

P2 could observe P1-W(X) 1, P3-W(X) 2, P1-W(X) 3. P3 could observe P3-W(X) 2, P1-W(X) 1,
P1-W(X) 3. 2 write orders are both observed in both sequences. So it is causally and PRAM
consistent.

(d)

P1: W(X) 0 W(X) 1 W(Y) 2

P2: R(X) 1

P3: R(Y) 2 R(X) 0

6

Sequential Causal Processor PRAM

Answer:

Sequential Causal Processor PRAM

X ✓ X X

It is causally consistent because there are no causal related operations. It is not PRAM because
the write order from P1 is violated in P3.

(e)

P1: W(X) 0 W(X) 1 R(Y) 0

P2: W(Y) 0 W(Y) 1 R(X) 0

P3: R(X) 0 R(X) 1

Sequential Causal Processor PRAM

Answer:

Sequential Causal Processor PRAM

X ✓ ✓ ✓

It is causally consistent because there are no causal related operations. It is PRAM consistent
because all processor can observe 0, 1 order for both X and Y variable. It is coherent and
therefore processor consistency for the same reason.

However, it is not sequential consistent because it will result in a loop if you try to order P1 and
P2’s operations in some sequential order. “...; each processor can order the other’s write after its
own read”.

7

Question 4. This diagram shows the contents of a cache block being shared by processors P1

and P2, using the Dragon protocol

Given the sequence of reads and writes by P1 and P2 shown at the right,

show the state of the cache blocks on P1 and P2.after each operation,

indicating what processor and bus operations are performed for each
operation. Assume that the cache block starts out in the shared state in
both processors.

Answer: The answers are underlined in the table below.

P1: WRITE W = 60

P2: READ Z

P2: READ W

P1: READ X

P1: READ Z

P2: WRITE Y = 70

P2: WRITE X = 40

P2: READ Y

P1: WRITE Z = 50

Action P1 P2 Processor and P1 block after P2 block after
(using Dragon
prot.)

state state bus operations w x y z w x y z

P1: WRITE W = 60 Sm Sc PrWr,
BusUpd(C)

60 10 15 20 60 10 15 20

P2: READ Z Sm Sc PrRd 60 10 15 20 60 10 15 20

P2: READ W Sm Sc PrRd 60 10 15 20 60 10 15 20

P1: READ X Sm Sc PrRd 60 10 15 20 60 10 15 20

P1: READ Z Sm Sc PrRd 60 10 15 20 60 10 15 20

P2: WRITE Y = 70 Sc Sm PrWr,
BusUpd(C)

60 10 70 20 60 10 70 20

P2: WRITE X = 40 Sc Sm PrWr,
BusUpd(C)

60 40 70 20 60 40 70 20

P2: READ Y Sc Sm PrRd 60 40 70 20 60 40 70 20

P1: WRITE Z = 50 Sm Sc PrWr,
BusUpd(C)

60 40 70 50 60 40 70 50

Question 5. In this sequence, assume that initially, flag0 = flag1 = 0, and A = B = u = v = w = 2.

Note that not all variables are initialized to 0!

P0:

S0: A = 1;

S1: B = 5;

S2: u = B;

S3: flag0 = 1;

P1:

S4: while (!flag0){};

S5: v = B – A;

S6: w = A;

S7: flag1 = 1;

P2:

S8: while (!flag1){};

S9: x = u × w + v;

(a) (6 points) What values could be produced for x under processor consistency? List all such

values.

8

Answer: All writes from each processor must be seen in order by other processors. This means
that P1 cannot progress past S4 until it sees all changes written by P0. So the only possible

value for v is 5-1 = 4. However, P2 could see changes by P1 before it sees changes by P0,

meaning that u could be 2 or 5 when x = u × w + v is calculated. This would yield the value 6

or 9 for x.

(b) (6 points) Which writes by different processors are causally related in this sequence? Simply
list pairs of statements (e.g., {S0, S4}) where the write in the second statement is causally related
to the first. Just list the pairs that are directly related, don’t write out the transitive closure. And
don’t write down any pairs that are executed by the same processor.

Answer: {S0, S5}, {S0, S6}, {S1, S5}, {S2, S9}, {S3, S4}, {S5, S9}, {S6, S9}, {S7, S8}

(c) (4 points) What values could be produced for x under causal consistency? Explain how you

have determined this.

Answer: Only 9. We have a sequence of causally related writes, S0 → S1 → S3 → S4 → S7 →

S8 → S9. These writes must be kept in order, assuring that S9 sees the up-to-date version of all
the variables.

(d) (4 points) If weak ordering is in use, what is the minimum set of variables that should be
treated as synchronization variables in order to assure the same results as under sequential
consistency? Explain why fewer synchronization variables will not suffice.

Answer: There need to be two synchronization variables, which are flag0 and flag1. If there

are less than two synchronization variables, then the writes by one processor are not seen by the
other processors in time so that the most recent updated values cannot be used by the other
processors even when they have the updated values in their memory location. This would lead to
inappropriate results.

In the above sequence, if we don’t have the proper synchronization variables then the final result
of x could have the values like 6, 13, 10, 14, 11, 7, 12, 6, 3, 4, 8, 5 etc., instead of the original

value, which has to be 9.

Question 6. The following CUDA code is for matrix

multiplication using shared memory (this is called local

memory tiling). We decompose matrices A and B into

non-overlapping submatrices of size BLOCK_SIZE×

BLOCK_SIZE. The thread blocks are also

BLOCK_SIZE × BLOCK_SIZE. Each thread in a thread

block computes a portion of the sum.

When each thread has computed this sum, we can load

the next BLOCK_SIZE × BLOCK_SIZE submatrices

from A and B, and continue adding the term-by-term

products to our result in C. After all submatrices have

been processed, we will have computed our result matrix C. The kernel code for this portion of

the program is shown below. Fill in the blanks in the code (2 points each), place barriers

(_syncthreads()) at the 2 places (out of the 6 places circled) where they’re needed (2 points

each), and explain your reasoning for each barrier placement (3 points each).

Answer:

 global void MatMulKernel(Matrix A, Matrix B, Matrix C) {

// Block row and column
int blockRow = blockIdx.y, blockCol = blockIdx.x;

9

 // Each thread block computes one sub-matrix Csub of C

Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

// Each thread computes 1 element of Csub, accumulating results into Cvalue
Cvalue = 0.0;

// Thread row and column within Csub
int row = threadIdx.y, col = threadIdx.x;

// Loop over all the sub-matrices of A and B required to compute
Csub
for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {

 // Get sub-matrices Asub of A and Bsub of B
Matrix Asub = GetSubMatrix(A, blockRow, m);
Matrix Bsub = GetSubMatrix(B, m, blockCol);

// Shared memory used to store Asub and Bsub respectively

 shared float As[BLOCK_SIZE][BLOCK_SIZE];

 shared float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load Asub and Bsub from device memory to shared memory

// Each thread loads one element of each sub-matrix
As[row][col] = GetElement(Asub, row, col); Bs[row][col] = GetElement(Bsub, row, col);

// Multiply Asub and Bsub together

for (int e = 0; e < BLOCK_SIZE; ++e)

Cvalue += As[row][e] * Bs[e][col];
}

// Each thread writes one element of Csub to memory

SetElement(Csub, row, col, Cvalue);

}

You may identify the two places synchronization is needed and write your reasons here, or you
may circle the places and write your reasoning on the previous page.

Where does the first _syncthread() go?

Answer:

Why does it go here?

Answer: With the first call to syncthreads() we insure that every entry of the submatrices of
A and B have been loaded into shared memory before any thread begins its computations
based on those values.

Where does the second _syncthread() go?

Answer:

Why does it go here?

Answer: The second call to syncthreads() ensures that every element of the submatrix of C
has been processed before we begin loading the next submatrix of A or B into shared memory.

1

2

3

4

5

4

5

